
Evaluating the Performance and Energy Efficiency of

N-Body Codes on Multi-Core CPUs and GPUs
Ivan Zecena1, Martin Burtscher1, Tongdan Jin2, Ziliang Zong1

1 Department of Computer Science, Texas State University
2 Ingram School of Engineering, Texas State University

{iz1003, burtscher, tj17, zz11}@txstate.edu

Abstract—N-body simulations are computation-intensive ap-

plications that calculate the motion of a large number of bodies

under pair-wise forces. Although different versions of N-body

code have been widely used in many scientific fields, the perfor-

mance and energy efficiency of various N-body codes have not

been comprehensively studied, especially when they are running

on newly released multi-core CPUs and GPUs (e.g. Tesla K20). In

this paper, we evaluate the performance and energy efficiency of

five parallel n-body implementations on two different multi-core

CPU systems and on two different types of GPUs. Our experi-

mental results show that up to 71% of the energy can be saved by

using all cores of a Xeon E5620 CPU instead of only one. We find

hyper-threading to be able to further reduce the energy usage

and runtime, but not as much as by adding more cores does. Fi-

nally, our experiments illustrate that GPU-based acceleration

using a Tesla K20c can boost the performance and energy effi-

ciency by orders of magnitude.

Keywords—performance; energy efficiency; multi-core CPUs;

GPUs; hyper-threading; n-body simulation

I. INTRODUCTION

Ever since Newton formulated his theory of gravitation to
describe the motion of planets and stars (i.e., bodies) under
mutual forces, n-body problems have attracted significant in-
terest. In recent decades, researchers have started employing n-
body simulations in a number of domains outside of astrono-
my, including for studying elementary particles that induce
electric and magnetic forces upon each other.

The n-body problem is simple in principle. Given the initial
state (mass/charge, position and velocity) of n bodies at time T,
we want to calculate the state of these bodies at a subsequent
time T’. This is usually done incrementally by computing the
evolution of the system in small time steps. For many real-
world problems, the number of bodies, n, is very large (mil-
lions or billions). Hence, direct pair-wise n-body simulation
may not be feasible due to its O(n2) algorithmic complexity. To
make large problem sizes computationally tractable, several
approximate n-body algorithms have been proposed, including
the Barnes-Hut algorithm [2] and the Fast Multipole Method
(FMM) [6]. In this paper, we study two implementations of the
direct O(n2) approach, which we call NB, as well as three im-
plementations of the O(n log n) Barnes-Hut algorithm, which
we call BH. We chose the NB and BH methods because they
represent interesting extremes. Of all the n-body algorithms we
are aware of, NB is the most compute bound and BH is the
most memory bound. Other fast algorithms, such as FMM,
share similarities with BH but are less memory bound.

Most of the existing work related to n-body simulation fo-

cuses on reducing the time complexity of the algorithm or on
parallelizing it for a specific hardware. However, a comprehen-
sive study on the performance and energy efficiency of various
n-body codes is missing, which is critical for N-body simula-
tion users to choose the right version of N-body code based on
different hardware (e.g. multi-core CPUs and GPUs) available
to them. In this paper, we evaluate the performance and energy
consumption of five parallel implementations of NB and BH.
For BH, we analyze the P-Threads version written by Nicholas
Chen at UIUC [12], the OpenMP version developed by Ricar-
do Alves at the University of Minho in Portugal, and the
CUDA version from the LonestarGPU benchmark suite [9].
For NB, we study an OpenMP and a CUDA version we pro-
grammed. Our CUDA code outperforms the corresponding n-
body implementation that ships with the CUDA 5.0 SDK [5]
and reaches over two teraflops on some inputs on a K20c GPU.
Section III provides more detail about these implementations.
Hereafter, we refer to the five codes as BHPThr, BHOMP,
BHCUDA, NBOMP, and NBCUDA.

We first evaluate the impact of the thread count on the per-
formance and energy efficiency of the multi-core CPU codes
(BHPThr, BHOMP, and NBOMP). We perform this analysis on two
systems: one based on an Intel CPU (System 1) and the other
based on two AMD CPUs (System 2). Our experiments show
that up to 71% of the energy can be saved when all CPU cores
are utilized. On the system that supports hyper-threading (Sys-
tem 1), we also evaluate the impact of hyper-threading on per-
formance and energy consumption. Our results show that hy-
per-threading can improve the performance of BHPthr and
BHOMP by up to 30%, which yields up to 21% energy savings
when simulating one million bodies. However, the impact of
hyper-threading on the energy efficiency of NBOMP is negligi-
ble. Finally, we evaluate the benefit of using GPU acceleration
on performance and energy efficiency of NB and BH. Our ex-
periments show that the GPU codes outperform the CPU ver-
sions by orders of magnitude. For example, when simulating
one million bodies, the BHCUDA code running on a K20c GPU
is 45 times faster and 97.6% more energy efficient than the
BHOMP code running on a Xeon E5620 CPU. When simulating
one million bodies, the NBCUDA code runs 424 times faster on
the GPU and only consumes 0.27% of the energy compared to
the NBOMP code running on the multi-core CPU. In addition,
we find our Kepler-based Tesla K20c GPU to outperform our
Fermi-based GeForce GTX 480 GPU in both performance and
energy efficiency on all tested programs and inputs.

The remainder of this paper is organized as follows. Section
II discusses related work. Section III presents the CPU and
GPU n-body implementations. Section IV describes our sys-
tems and experimental methodology. Section V discusses and

analyzes the results. Section VI concludes our study.

II. RELATED WORK

The n-body simulation problem has been studied extensive-
ly, and a variety of algorithms for it have been proposed. In
particular, many previous studies focus on developing fast al-
gorithms to break the O(n2) complexity boundary.

In 1986, Barnes and Hut proposed the now well-known
Barnes-Hut algorithm, which lowers the time complexity to
O(n log n) using approximation [2]. Based on the general prin-
ciple of this algorithm, researchers have developed many vari-
ants to speed up the execution. Salmon implemented a parallel
version for distributed-memory machines [13]. Later, Warren
and Salmon proposed improved parallel implementations [15],
[16]. In 1997, Warren et al. exceeded one gigaflop when run-
ning their Barnes-Hut code on 16 Intel Pentium Pro processors
[14]. Liu and Bhatt developed an algorithm that is based on a
dynamic global tree that spans multiple processors [8].
Burtscher and Pingali wrote the first Barnes-Hut implementa-
tion that runs the entire algorithm on a GPU [4]. Bedorf et al.
present a similar GPU implementation [3].

Several algorithms with a linear time complexity have also
been proposed. The first was devised by Appel [1] in 1985.
Greengard and Rokhlin developed the O(n) Fast Multipole
Method [6]. Xue proposed another linear-time hierarchical tree
algorithm for n-body simulations [18].

Very little work has been published on studying the energy
efficiency of different n-body algorithms. The closest work we
can find was published by Malkowski et al. [10]. They explore
how to use low-power modes of the CPU and caches, and
hardware optimization such as a load-miss predictor and data
prefetchers, to conserve energy without hurting performance.

III. IMPLEMENTATION DESCRIPTION

We evaluate five different n-body codes belonging to two
different categories. The NB implementations have O(n2) com-
plexity and the BH implementations have O(n log n) complexi-
ty. The goal of all five programs is to simulate the time evolu-
tion of a star cluster under gravitational forces for a given
number of time steps.

A. BH Algorithm

The Barnes-Hut algorithm approximates the forces acting
on each body. It hierarchically partitions the volume around the
n bodies into successively smaller cells and records this spatial
hierarchy in an unbalanced octree. Each cell forms an internal
node of the octree and summarizes information about all the
bodies it contains. The leafs of the octree are the individual
bodies. This spatial hierarchy reduces the time complexity to
O(n log n) because, for cells that are sufficiently far away, the
algorithm only performs one force calculation with the cell
instead of performing one force calculation with each body
inside the cell, thus drastically reducing the amount of compu-
tation. However, differing parts of the octree have to be trav-
ersed to compute the force on each body, making the code’s
control flow and memory-access patterns quite irregular.

The P-Threads, OpenMP and CUDA codes we study per-
form six key operations in each time step to implement the BH

algorithm. The first is an O(n) reduction to find the minimum
and maximum coordinates of all bodies. The second operation
builds the octree by hierarchically dividing the space contain-
ing the bodies into ever smaller cells in O(n log n) time until
there is at most one body per cell. The third operation summa-
rizes information in all subtrees in O(n) time. The fourth opera-
tion approximately sorts the bodies by spatial distance in O(n)
time to improve the performance of the next operation. The
fifth operation computes the force on each body in O(n log n)
time by performing prefix traversals on the octree. This is by
far the most time consuming operation in the BH algorithm.
The final operation updates each body’s position and velocity
based on the computed force in O(n) time. Note that the P-
Threads code only parallelizes the force calculation. The
OpenMP and CUDA codes parallelize all six operations. In
case of OpenMP, “parallel for” and “parallel” pragmas are
used, in some cases in combination with gcc-specific synchro-
nization primitives, memory fences, and atomic operations to
handle data dependencies. The force calculation code uses a
block-cyclic schedule whereas the other operations use the
default schedule. The CUDA code incorporates many GPU-
specific optimizations that are described elsewhere [4].

B. NB Algorithm

The direct NB algorithm performs precise pair-wise force
calculations. For n bodies, O(n2) pairs need to be considered,
making the calculation quadratic in the number of bodies.
However, identical computations have to be performed for all n
bodies, leading to a very regular implementation that maps well
to GPUs. As with BH, all force calculations are independent,
resulting in a large amount of parallelism.

Both the OpenMP and the CUDA implementations perform
two key operations per time step. The first is the O(n2) force
calculation and the second is an O(n) integration where each
body’s position and velocity are updated based on the comput-
ed force. The OpenMP code uses a “parallel for” pragma to
parallelize the outer loop of the force calculation and the loop
of the integration. The default schedule is used in both cases.
The CUDA code is very similar in structure and uses GPU
threads to completely eliminate these two loops, i.e., each
thread handles a different iteration. In addition, the force calcu-
lation code employs data tiling in shared memory (a software
controlled L1 data cache) and unrolls the inner loop.

In summary, the NB codes are relatively straightforward,
have a high computational density, and only access main
memory infrequently because of excellent caching. In contrast,
the BH codes are quite complex (they repeatedly build unbal-
anced octrees and perform various traversals on them), have a
low computational density, and perform mostly pointer-chasing
memory accesses. Due to the lower time complexity, the
BHCUDA implementation is about 33 times faster on a K20c
than the NBCUDA code when simulating one million stars.

IV. EVALUATION METHODOLOGY

A. Systems, Compilers, and Inputs

We conducted our experiments on two machines. System 1
is based on a 2.4 GHz Xeon E5620 CPU with four cores run-
ning 32-bit CentOS 5.9. It contains two GPUs. The first GPU is
a previous generation Fermi-based GeForce GTX 480 with 1.5

GB of global memory and 15 streaming multiprocessors (SMs)
with 480 processing elements (PEs) running at 1.4 GHz. The
second GPU is a current generation Kepler-based Tesla K20c
with 5 GB of global memory and 13 SMXs with 2,496 PEs
running at 0.7 GHz. The idle power of the GTX 480 is 54 W,
the K20c draws 13 W when idling, and the entire system con-
sumes 165 W in idle mode. System 2 contains two quad-core
AMD Opteron 2380 CPUs running at 2.5 GHz. It has no
GPUs. The idle power draw of System 2 is 134.5 W.

We compiled the CUDA codes on System 1 with nvcc 5.0
using the -O3, -ftz=true, and -arch=sm_20 or -arch=sm_35
flags. For the P-Threads and OpenMP codes, we used gcc 4.6.3
on System 1 and gcc 4.4.6 on System 2 with the -O3 flag on
both systems. We ran the BH programs with 250,000, 500,000
and one million stars and the NB programs with 25,000, 50,000
and 100,000 stars. We used ten time steps for all experiments.
The stars’ positions and velocities are initialized according to
the empirical Plummer model [11], which mimics the density
distribution of globular clusters.

B. Energy Profiling

We measure the system-wide energy consumption when
running the application codes using a WattsUp power meter
[17]. The meter’s software runs in the background as a daemon
and samples the voltage and current to compute the power. It
has a 1 Hz sampling frequency and a power resolution of 0.1
W. The energy measurements are derived from the power read-
ings by integrating the power over the runtime of the codes.

To improve the accuracy of our measurements, we report
the median of five runs for each experiment. Additionally, we
removed high-energy outliers in the data caused by operating
system jitter [7] (a.k.a operating system noise or operating sys-
tem interference) and external user activities such as logging
into the system, which are unavoidable in multi-user systems.
Finally, we started our measurements with a four-second head
delay before launching the program. This removes the over-
head caused by starting the meter and our applications at the
same time and allows the system to settle before the application
program is launched. We then removed the first four seconds
of power readings from our final calculations.

V. EXPERIMENTAL EVALUATION

This section presents our experiments and analyzes the re-
sults. Subsection A discusses the impact of increasing the
number of threads on performance and energy efficiency of the
BH and NB codes. Subsection B studies the impact of hyper-
threading on performance and energy consumption. Subsection
C evaluates the GPU results and compares them to the CPU
results.

A. Impact of Thread Count

BH Algorithm Table I shows the runtime and the energy
consumption of BHOMP and BHPThr on System 1 for one, four,
and eight threads with 250,000, 500,000 and one million bodies
over ten time steps. For all three input sizes and both imple-
mentations, we observe that the performance increases almost
linearly (96% parallel efficiency) when going from one to four
threads but sublinearly (64% parallel efficiency) when going
from four to eight threads, i.e., when going from one to two

threads per CPU core using hyper-threading. We defer the dis-
cussion of the hyper-threading results to Subsection B.

TABLE I. CPU BH RESULTS FOR 10 TIME STEPS ON THE HYPER-
THREADED 4-CORE SYSTEM 1

Fig. 1. Runtimes of BHOMP and BHPThr with 1 million bodies and 10 time

steps on System 1

Fig. 2. Energy consumption of BHOMP and BHPThr with 1 million bodies and

10 time steps on System 1

Taking the 500,000-body experiments as an example, we
observe that the OpenMP code’s runtime is 410.6 seconds with
one thread and 106.3 seconds with four threads, which amounts
to a speedup of 3.86 when quadrupling the number of cores
used. Analyzing the energy consumption, we find that using
one thread consumes 69,505 joules whereas using four threads
only consumes 20,312 joules to compute the same result, a
71% reduction in energy usage. The P-Threads implementation

of Bodies # of Threads Algorithm Runtime [s] Energy [J]

OpenMP 183.0 30,776

P-Threads 225.0 37,934

OpenMP 47.5 9,035

P-Threads 58.9 11,065

OpenMP 38.3 7,539

P-Threads 46.4 9,017

OpenMP 410.6 69,505

P-Threads 497.6 83,643

OpenMP 106.3 20,312

P-Threads 130.1 24,811

OpenMP 83.8 16,564

P-Threads 101.5 19,818

OpenMP 902.7 152,462

P-Threads 1,085.6 183,693

OpenMP 232.7 44,723

P-Threads 284.9 53,847

OpenMP 180.7 35,937

P-Threads 218.5 42,714

250,000

500,000

1,000,000

1 Thread

4 Threads

8 Threads (HT)

1 Thread

4 Threads

8 Threads (HT)

1 Thread

4 Threads

8 Threads (HT)

0

200

400

600

800

1,000

1,200

1 Thread 4 Threads 8 Threads (HT)

Ti
m

e
[s

]

OpenMP

P-Threads

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

1 Thread 4 Threads 8 Threads (HT)

En
er

gy
 [J

]

OpenMP

P-Threads

behaves similarly but the absolute numbers are worse. It runs
for 497.6 seconds with one thread and for 130.1 seconds with
four threads, which amounts to a speedup of 3.82. Energy-
wise, we see a 70% savings when using four threads instead of
one. The other two inputs exhibit nearly identical trends. For
all three inputs sizes, the OpenMP version of BH consistently
outperforms the P-Threads version on System 1 in both per-
formance and energy efficiency. On average, the OpenMP code
is 22.2% faster and consumes 21.5% less energy than the P-
Threads code. Figures 1 and 2 visualize the runtime and energy
consumption, respectively, for the 1,000,000-body runs.

The results for System 2 are provided in Table II. Figures 3
and 4 graphically depict the runtimes and energy consumption
for one million bodies. Since this system has eight physical
cores, we obtained results for one, eight, and 16 threads and
250,000, 500,000 and one million bodies. On the middle input,
the OpenMP implementation achieves a 7.89-fold speedup
(98.6% parallel efficiency) and an 86% energy savings when
going from one to eight threads. The P-Threads code yields a
speedup of 7.17 (89.6% parallel efficiency) and an 85% reduc-
tion in energy consumption when going from one to eight
threads. The results for the other inputs are again very similar.

TABLE II. CPU BH RESULTS FOR 10 TIME STEPS ON THE 8-CORE

SYSTEM 2

Interestingly, the BHOMP code scales substantially better on
System 2 than the BHPThr code. Whereas the OpenMP code is
only 7.4% faster when using one thread, its advantage over the
P-Threads code increases to 18.3% when using eight threads.
The energy savings closely follow these percentages. In con-
trast, the two codes scale nearly identically on System 1.

Comparing the single-thread runs across the two systems,
we find that System 1 is, on average, 2.54 faster on the
OpenMP code and 2.25 times faster on the P-Threads code.
However, the energy-efficiency ratios are lower. System 1 out-
performs System 2 by a factor of 2.04 on the OpenMP code
and by a factor of 1.81 on the P-Threads code on average.
Overall, System 1 is much faster and also more energy efficient
than System 2, but System 2 has a lower average power con-
sumption of 135.8 watts (compared to 168.7 watts for System
1). Note that these numbers are only a little above the idle

power draw for both systems, showing that the one computa-
tion thread consumes relatively little extra energy. For refer-
ence, when using four threads on System 1 and eight threads on
System 2, the average power draw increases to 190.2 watts and
147.6 watts, respectively.

Fig. 3. Runtimes of BHOMP and BHPThr with 1 million bodies and 10 time

steps on the 8-core System 2

Fig. 4. Energy consumption of BHOMP and BHPThr with 1 million bodies and

10 time steps on the 8-core System 2

In summary, we find the OpenMP implementation to out-
perform the P-Threads implementation in performance and
energy efficiency on both systems for all investigated inputs
and thread counts. This is most likely because the P-Threads
code only parallelizes the force calculation whereas the
OpenMP code parallelizes all six algorithmic steps. Neverthe-
less, both BH codes scale well on our two multi-core CPU sys-
tems. Most importantly, we find on both systems that using all
available cores results in large energy savings. The main reason
for this is the high idle power. Since its contribution to the
overall energy consumption is proportional to the runtime, re-
ducing the runtime through parallelization saves energy. If the
idle power were zero, using four cores to run the code, say,
3.86 times faster would actually increase the energy consump-
tion relative to running the code on just a single core assuming
all cores are independent (which they are not in current multi-
core CPUs) and identical.

As real systems have a non-zero idle power, there is a min-
imum speedup that must be achieved by parallel code to be
more energy efficient than serial code. For example, System 1
must execute the BHOMP code at least 1.13 times faster using
four cores to save energy over running the code on one core.
The corresponding factor for System 2 is 1.10. Fortunately, a
10% or 13% speedup should be relatively easy to achieve on
four or eight cores, meaning that parallelization is likely to be

of Bodies # of Threads Algorithm Runtime [s] Energy [J]

OpenMP 490.7 66,559

P-Threads 528.4 71,743

OpenMP 62.3 9,264

P-Threads 75.1 11,025

OpenMP 172.5 25,546

P-Threads 81.9 11,979

OpenMP 1,039.6 141,165

P-Threads 1,117.6 151,816

OpenMP 131.8 19,498

P-Threads 155.9 22,995

OpenMP 344.6 51,134

P-Threads 162.6 23,942

OpenMP 2,175.1 295,330

P-Threads 2,325.7 316,155

OpenMP 276.5 40,887

P-Threads 321.2 47,221

OpenMP 695.9 103,739

P-Threads 324.1 47,598

1,000,000

1 Thread

8 Threads

16 Threads

250,000

1 Thread

8 Threads

16 Threads

500,000

1 Thread

8 Threads

16 Threads

0

500

1,000

1,500

2,000

2,500

1 Thread 8 Threads 16 Threads

Ti
m

e
[s

]

OpenMP

P-Threads

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

1 Thread 8 Threads 16 Threads

En
er

gy
 [J

]

OpenMP

P-Threads

worthwhile to improve a program’s energy efficiency on to-
day’s multi-core systems.

NB Algorithm Tables III and IV contain the experimental
results for our CPU implementation of the NB algorithm run-
ning on Systems 1 and 2, respectively. They show how the
OpenMP code performs for different input sizes and thread
counts. As before, we use 1, 4, and 8 threads on System 1 and
1, 8, and 16 threads on System 2. The input sizes are 25,000,
50,000 and 100,000 bodies on both systems. These sizes are
smaller because the NB code is slower than the BH code. The
NBOMP results for the largest input are further illustrated in
Figures 5 and 6 for System 1 and in Figures 7 and 8 for System
2. We leave the hyper-threading discussion for Subsection B.

TABLE III. CPU NBOMP RESULTS FOR 10 TIME STEPS ON THE HYPER-
THREADED 4-CORE SYSTEM 1

TABLE IV. CPU NBOMP RESULTS FOR 10 TIME STEPS ON THE 8-CORE

SYSTEM 2

Fig. 5. Runtime of NBOMP with 100,000 bodies and 10 timesteps on System 1

On System 1, the NB code scales nearly identically on all
three inputs. Going from one to four threads, we obtain an av-
erage speedup of 3.87 (corresponding to 96.7% parallel effi-
ciency) and a 71.5% savings in energy. On System 2, the be-
havior is also very similar between the three inputs. Increasing

the number of threads from one to eight yields a speedup of
7.975 (99.7% parallel efficiency) and energy savings of 86.4%.

Fig. 6. Energy consumption of NBOMP with 100,000 bodies and 10 time steps

on System 1

Fig. 7. Runtime of NBOMP with 100,000 bodies and 10 timesteps on the 8-

core System 2

Fig. 8. Energy consumption of NBOMP with 100,000 bodies and 10 time steps

on the 8-core System 2

Comparing the single-threaded runs on both systems, we
find that System 1 is 1.83 times faster and 1.48 times more
energy efficient than System 2 when running NBOMP. The min-
imum speedup to be energy efficient using four cores on Sys-
tem 1 is 10.5%. System 2 only requires a minimum speedup of
8.2% on eight cores to be more energy efficient.

In summary, the BH and NB CPU codes experience good
scaling and boosts in energy efficiency on both tested systems.
Clearly, parallelizing the BH and NB codes is a very profitable
way to improve both performance and energy efficiency.

B. Impact of Hyper-Threading

In this subsection, we study the impact of hyper-threading
(i.e., running two threads per CPU core) on performance and

of Bodies # of Threads Runtime [s] Energy [J]

1 Thread 154.3 25,971

4 Threads 39.9 7,344

8 Threads (HT) 39.7 7,388

1 Thread 616.3 103,670

4 Threads 159.2 29,563

8 Threads (HT) 158.7 29,996

1 Thread 2,465.5 414,248

4 Threads 637.6 119,447

8 Threads (HT) 634.3 120,725

25,000

50,000

100,000

of Bodies # of Threads Runtime [s] Energy [J]

1 Thread 280.5 38,251

8 Threads 35.2 5,157

16 Threads 35.6 5,253

1 Thread 1,131.3 153,478

8 Threads 141.6 20,809

16 Threads 142.4 20,968

1 Thread 4,525.3 614,314

8 Threads 567.9 83,875

16 Threads 566.9 83,546

25,000

50,000

100,000

0

500

1,000

1,500

2,000

2,500

3,000

1 Thread 4 Threads 8 Threads (HT)

Ti
m

e
[s

]

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

1 Thread 4 Threads 8 Threads (HT)

En
er

gy
 [J

]

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

1 Thread 8 Threads 16 Threads

Ti
m

e
[s

]

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

1 Thread 8 Threads 16 Threads

En
er

gy
 [J

]

energy efficiency of System 1. System 2 does not support hy-
per-threading.

BH Algorithm Table I and Figures 1 and 2 above illustrate
the results for BH. Whereas hyper-threading clearly provides a
benefit, the benefit is smaller than the benefit of using more
physical cores. For instance, going from one to two threads per
core (i.e., increasing the thread count from 4 to 8) results in a
parallel efficiency of about 64%. In contrast, going from one to
four threads with one thread per core results in a parallel effi-
ciency of about 96%. The results are nearly the same for both
implementations and all inputs we tested. Note that the runtime
as well as the energy consumption decrease when using hyper-
threading. On average, hyper-threading yields additional ener-
gy savings of 18% on BHOMP and 20% on BHPThr.

On System 2, running twice as many threads as there are
cores (i.e., increasing the thread count from 8 to 16) hurts the
performance and the energy efficiency, as the data in Table II
and Figures 3 and 4 above show, because this system does not
support hyper-threading. Interestingly, the degradation is small
for BHPThr but large for BHOMP. We are unsure what causes this
difference in behavior between the two programs when over-
subscribing threads to cores in System 2. Running more threads
than there are (non-hyper-threading) cores hurts the perfor-
mance and increases the energy consumption on both codes
and all inputs. Hence, we do not recommend it.

NB Algorithm Surprisingly, hyper-threading does not help
with NB as shown in Figures 5 and 6. Whereas it does result in
a tiny speedup, as Table III reveals, it actually raises the energy
consumption. Hence, hyper-threading does not further improve
the energy efficiency of the NB code on System 1.

The reason why hyper-threading improves the performance
and the energy efficiency of the two BH implementations but
not the NB implementation is the following. The BH codes are
memory bound, meaning that they do not fully utilize the CPU
cores because the memory system is the bottleneck. Hyper-
threading enables each core to execute useful instructions from
one thread whenever the other thread is stalled waiting for a
memory request, thus boosting performance. In other words,
hyper-threading helps hide some of the memory access laten-
cies. In contrast, the NB code is compute bound, i.e., the CPU
cores are already fully utilized when running one thread per
core. Hence, there is no benefit from hyper-threading, but it
should be pointed out that it also does not hurt performance.

In summary, we conclude that adding extra cores is more
useful than adding hyper-threading support from an energy-
efficiency perspective. Yet, we find running two threads per
core to save up to 21% energy (20% on average on BHPThr).
Moreover, the combination of both approaches results in the
largest energy savings and should be used when available.

C. Impact of GPU Acceleration

In this subsection, we study the performance and the energy
efficiency of our CUDA implementations of BH and NB. We
report the runtime over the entire application, including CPU
and GPU code, and the energy consumption of the entire sys-
tem when executing the accelerated code segments on a GTX
480 or a K20c GPU, both of which reside in System 1. As be-
fore, we run the BH code with 250,000, 500,000, and one mil-

lion bodies and the NB code with 25,000, 50,000 and 100,000
bodies. Table V presents the results for the GTX 480 and Table
VI for the K20c. Figures 9 to 12 depict the same results graph-
ically.

TABLE V. GTX 480 GPU BHCUDA AND NBCUDA RESULTS FOR 10 TIME

STEPS

TABLE VI. K20C GPU BHCUDA AND NBCUDA RESULTS FOR 10 TIME STEPS

Comparing the runtimes between the two GPUs in Figures
9 and 10, we find that the K20c outperforms the GTX 480 by
1.6% to 20.4% on BH and by up to a factor of 2.35 on NB.
However, on the smallest NB input, the GTX 480 is 13.6%
faster. Nevertheless, the K20c is typically faster as it is based
on the current-generation Kepler architecture whereas the GTX
480 is based on the previous-generation Fermi architecture.

Fig. 9. Runtime of BHCUDA with 10 timesteps

Fig. 10. Runtime of NBCUDA with 10 timesteps

Algorithm # of Bodies Runtime [s] Energy [J]

250,000 1.3 376

500,000 2.4 663

1,000,000 4.8 1,223

25,000 0.4 249

50,000 1.1 371

100,000 3.5 906

BH

NB

Algorithm # of Bodies Runtime [s] Energy [J]

250,000 1.3 330

500,000 2.2 547

1,000,000 4.0 865

25,000 0.5 196

50,000 0.7 198

100,000 1.5 329

BH

NB

0

1

2

3

4

5

6

250,000 500,000 1,000,000

Ti
m

e
[s

]

of Bodies

CUDA GTX 480

CUDA K20c

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

25,000 50,000 100,000

Ti
m

e
 [s

]

of Bodies

CUDA GTX 480

CUDA K20c

This difference in GPU generations is also the reason for
the better energy efficiency of the K20c, which was a primary
design goal for the Kepler. Figures 11 and 12 show the energy
consumption of BHCUDA and NBCUDA, respectively. The K20c
is more energy efficient than the GTX 480 on all three inputs
and both codes. On BH, the K20c saves between 12% and 29%
energy. On NB, it saves between 21% and 64% energy.

In summary, the K20c generally but not always outper-
forms the GTX 480. The difference in runtime is more pro-
nounced on compute-bound code like NB. More importantly,
the K20c is substantially more energy efficient than the GTX
480, in particular on compute-bound code. Note that the higher
performance of the K20c contributes to but is not the primary
reason for its better energy efficiency. Rather, the K20c is
based on a substantially lower power GPU design.

Fig. 11. Energy consumption of BHCUDA with 10 timesteps

Fig. 12. Energy consumption of NBCUDA with 10 timesteps

To evaluate the benefit of using GPUs, we compare the
GPU results to the results of the best-performing CPU code,
which is the OpenMP version of BH and NB running on Sys-
tem 1 with hyper-threading. Figures 13 and 14 show the BH
comparisons and Figures 15 and 16 show the NB comparisons.

Fig. 13. Runtime comparison between BHOMP and BHCUDA with 10 timesteps

The GPU codes are tremendously faster and much more
energy efficient than the multi-core CPU codes on all inputs.
Comparing BHOMP running on System 1 to BHCUDA running on
the K20c, we find the GPU code to be 31 times as fast for
250,000 bodies, 39 times as fast for 500,000 bodies, and 45
times as fast for 1,000,000 bodies. Moreover, the GPU code
consumes only 4.4% of the energy for 250,000 bodies, 3.3%
for 500,000 bodies, and 2.4% for 1,000,000 bodies. This
amounts to almost two orders of magnitude in energy savings.
Clearly, GPUs are not only great at accelerating code but also
nearly as effective at saving energy.

Fig. 14. Energy consumption comparison between BHOMP and BHCUDA with

10 timesteps

Fig. 15. Runtime comparison between NBOMP and NBCUDA with 10 timesteps

Fig. 16. Energy consumption comparison between NBOMP and NBCUDA with

10 timesteps

The GPU outperforms the CPU by even larger factors on
NB. However, this is likely in part due to poor code generation.
In particular, the gcc compiler does not exploit vector instruc-
tions for this code. Hence, we find the NBCUDA code running on
the K20c to be 79 times as fast as the NBOMP code running on
System 1 for 25,000 bodies, 225 times as fast for 50,000 bod-
ies, and 424 times as fast for 100,000 bodies. The GPU code
consumes only 2.7% of the energy for 25,000 bodies, 0.66%
for 50,000 bodies, and 0.27% for 100,000 bodies. This amounts

0

200

400

600

800

1,000

1,200

1,400

250,000 500,000 1,000,000

En
er

gy
 [J

]

of Bodies

CUDA GTX 480

CUDA K20c

0

100

200

300

400

500

600

700

800

900

1,000

25,000 50,000 100,000

En
er

gy
 [J

]

of Bodies

CUDA GTX 480

CUDA K20c

0

20

40

60

80

100

120

140

160

180

250,000 500,000 1,000,000

Ti
m

e
[s

]

of Bodies

OpenMP

CUDA GTX 480

CUDA K20c

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

250,000 500,000 1,000,000

En
er

gy
 [J

]

of Bodies

OpenMP

CUDA GTX 480

CUDA K20c

0

20,000

40,000

60,000

80,000

100,000

120,000

25,000 50,000 100,000

Ti
m

e
[s

]

of Bodies

OpenMP

CUDA GTX 480

CUDA K20c

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

25,000 50,000 100,000

En
er

gy
 [J

]

of Bodies

OpeMP

CUDA GTX 480

CUDA K20c

to close to three orders of magnitude in energy savings.

In summary, our results indicate that GPUs can improve the
performance of n-body codes by one to three orders of magni-
tude compared to multi-core CPUs. Their energy consumption
is lower by almost the same factor, making GPU acceleration
also a very promising and effective approach for improving the
energy efficiency of n-body codes.

VI. CONCLUSION AND FUTURE WORK

This paper studies the energy consumption and perfor-
mance of five n-body codes running on two systems and two
GPUs. The first system is based on a 2.4 GHz quad-core Intel
Xeon E5620 CPU that supports 2-way hyper-threading. The
second system contains two 2.5 GHz quad-core AMD Opteron
2380 CPUs. The two NVIDIA GPUs are a 1.4 GHz GeForce
GTX 480 with 480 processing elements and a 0.7 GHz Tesla
K20c with 2496 processing elements. Two of the five n-body
codes we study implement an O(n2) algorithm and the remain-
ing three programs implement the O(n log n) Barnes-Hut algo-
rithm. The former category includes an OpenMP and a CUDA
version whereas the latter category includes a P-Threads, an
OpenMP and a CUDA version. Each code is tested on 3 inputs.

The studied codes scale well on both systems with different
multi-core CPUs, including the complex Barnes-Hut imple-
mentation. However, there are differences in the scaling of the
programs. Unexpectedly, we found some n-body codes to scale
better on one system than on the other while other codes scale
nearly equally on both systems. Hardly surprisingly, the
OpenMP implementation that parallelizes every step of the
algorithm is faster than the P-Threads implementation that only
parallelizes one step.

In general, the CPU power draw is relatively small com-
pared to the system idle power, which makes the energy con-
sumption of a program highly dependent on the runtime. As a
consequence, any reduction in runtime results in nearly propor-
tional savings in energy. This is why program parallelization is
so important to achieving high energy efficiency. It also ex-
plains why our system with the lower power draw is less effi-
cient as it is much slower. We conclude that shortening a pro-
gram’s runtime is paramount to improve its energy efficiency.
Hence, it is crucial to parallelize the entire application and to
utilize all cores. After all, we found very small speedups due to
parallelization to be sufficient to improve the energy efficiency.

Once all cores are used, running multiple threads per core
on systems that support hyper-threading can result in signifi-
cant additional improvements. Interestingly, we found hyper-
threading to only help on the memory-bound code we studied
but not on the compute-bound code. Nevertheless, since it does
not appear to hurt, we recommend using hyper-threading when
available. However, running too many threads can be detri-
mental to performance and energy efficiency. Thus, care must
be taken to avoid oversubscribing threads to cores.

Even though the power drawn by the GPUs is quite high
(on the order of the system’s idle power) and much higher than
that of the CPUs, the GPUs are so much faster that they turn
out to be very energy efficient. In fact, the GPU-accelerated n-
body implementations we investigated consume two to three
orders of magnitude less energy than the multi-core CPU

codes. Whereas the current-generation K20c GPU typically but
not always outperforms the previous-generation GTX 480
GPU, the K20c appears to generally consume less energy, in
particular on compute-bound code. Overall, we found GPUs to
be great at speeding up our programs and nearly as effective at
saving energy, making GPU acceleration our number one rec-
ommendation for improving energy efficiency.

In future work, we plan to expand our test bed to encom-
pass a wider variety of systems and accelerators, including the
new Intel Xeon Phi. On the software side, we want to extend
our work to distributed-memory implementations as well as
other commonly used n-body algorithms such as FMM. Final-
ly, we hope to broaden our investigation to important problem
domains such as sorting and FFTs.

ACKNOWLEDGMENTS

The work reported in this paper is supported by the U.S.
National Science Foundation under Grants No. CNS-1118043,
DUE-1141022, CNS-1217231, the U.S. Department of Agri-
culture under Grant No. 2011-38422-30803, a grant from the
Texas State University Research Enhancement Program as well
as grants and equipment donations from NVIDIA Corporation.

REFERENCES

[1] A. Appel, “An Efficient Program for Many-Body Simulation”, SIAM J.
Scientific and Statistical Computing, vol. 6, 1985.

[2] J. Barnes and P. Hut, “A Hierarchical O(N log N) Force-Calculation
Algorithm”, Nature, vol. 324, 1986.

[3] J. Bedorf, E. Gaburov, and S.P. Zwart, “A Sparse Octree Gravitational
n-Body Code that Runs Entirely on the GPU Processor”, J. Comput.
Phys., 231(7):2825–2839, 2012.

[4] M. Burtscher and K. Pingali, “An Efficient CUDA Implementation of
the Tree-based Barnes Hut n-Body Algorithm”, Chapter 6 in GPU
Computing Gems Emerald Edition, pp. 75-92, 2011.

[5] CUDA SDK: https://developer.nvidia.com/cuda-toolkit

[6] L. Greengard and V. Rokhlin, “A Fast Algorithm for Particle
Simulations”, J. of Comp. Physics, 73:325–348, 1987.

[7] T. Jones, A. Tauferner, and T. Inglett, “Linux OS Jitter Measurements at
Large Node Counts Using a Blue Gene/L”, Technical Report, Oak Ridge
National Laboratory, ORNL/TM-2009/303, 2009.

[8] P.F. Liu and S.N. Bhatt, “Experiences with Parallel N-Body
Simulation”, IEEE Trans. on Parallel and Distributed Sys., 11(11), 2000.

[9] LonestarGPU: http://iss.ices.utexas.edu/?p=projects/galois/lonestargpu

[10] K. Malkowski, P. Raghavan, and M. Irwin, “Toward a Power Efficient
Computer Architecture for Barnes-Hut N-body Simulations”, Proc. of
the 2006 ACM/IEEE Conference on Supercomputing, 2006.

[11] H. C. Plummer, “On the Problem of Distribution in Globular Star
Clusters”, Mon. Not. R. Astron. Soc., 71:460, 1911.

[12] P-Threads Barnes-Hut implementation with uniform data distribution:
https://wiki.engr.illinois.edu/download/attachments/183271790/BarnesH
ut_PThreads_Uniform_Distribution_v1.0.zip

[13] J. Salmon, “Parallel Hierarchical N-Body Methods”, PhD thesis, 1990.

[14] M. Warren, D. Becker, M. Goda, J. Salmon, and T. Stering, “Parallel
Supercomputing with Commodity Components”, Proc. Int’l Conf.
Parallel and Distributed Processing Techniques and Applications, 1997.

[15] M. Warren and J. Salmon, “Astrophysical N-Body Simulations Using
Hierarchical Tree Data Structures”, Proc. Supercomputing, 1992.

[16] M. Warren and J. Salmon, “A Parallel Hashed Oct-Tree N-Body
Algorithm”, Proc. Supercomputing, 1993.

[17] WattsUp: https://www.wattsupmeters.com/

[18] G. Xue, “An O(n) Time Hierarchical Tree Algorithm for Computing
Force Field in n-Body Simulations”, Theoretical Computer Science, vol.
197(12):157–169, 1998.

https://developer.nvidia.com/cuda-toolkit
http://iss.ices.utexas.edu/?p=projects/galois/lonestar
https://www.wattsupmeters.com/

