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Abstract—N-body simulations are computation-intensive ap-

plications that calculate the motion of a large number of bodies 

under pair-wise forces. Although different versions of N-body 

code have been widely used in many scientific fields, the perfor-

mance and energy efficiency of various N-body codes have not 

been comprehensively studied, especially when they are running 

on newly released multi-core CPUs and GPUs (e.g. Tesla K20). In 

this paper, we evaluate the performance and energy efficiency of 

five parallel n-body implementations on two different multi-core 

CPU systems and on two different types of GPUs. Our experi-

mental results show that up to 71% of the energy can be saved by 

using all cores of a Xeon E5620 CPU instead of only one. We find 

hyper-threading to be able to further reduce the energy usage 

and runtime, but not as much as by adding more cores does. Fi-

nally, our experiments illustrate that GPU-based acceleration 

using a Tesla K20c can boost the performance and energy effi-

ciency by orders of magnitude. 

Keywords—performance; energy efficiency; multi-core CPUs; 

GPUs; hyper-threading; n-body simulation 
 

I. INTRODUCTION 

Ever since Newton formulated his theory of gravitation to 
describe the motion of planets and stars (i.e., bodies) under 
mutual forces, n-body problems have attracted significant in-
terest. In recent decades, researchers have started employing n-
body simulations in a number of domains outside of astrono-
my, including for studying elementary particles that induce 
electric and magnetic forces upon each other. 

The n-body problem is simple in principle. Given the initial 
state (mass/charge, position and velocity) of n bodies at time T, 
we want to calculate the state of these bodies at a subsequent 
time T’. This is usually done incrementally by computing the 
evolution of the system in small time steps. For many real-
world problems, the number of bodies, n, is very large (mil-
lions or billions). Hence, direct pair-wise n-body simulation 
may not be feasible due to its O(n2) algorithmic complexity. To 
make large problem sizes computationally tractable, several 
approximate n-body algorithms have been proposed, including 
the Barnes-Hut algorithm [2] and the Fast Multipole Method 
(FMM) [6]. In this paper, we study two implementations of the 
direct O(n2) approach, which we call NB, as well as three im-
plementations of the O(n log n) Barnes-Hut algorithm, which 
we call BH. We chose the NB and BH methods because they 
represent interesting extremes. Of all the n-body algorithms we 
are aware of, NB is the most compute bound and BH is the 
most memory bound. Other fast algorithms, such as FMM, 
share similarities with BH but are less memory bound. 

Most of the existing work related to n-body simulation fo-

cuses on reducing the time complexity of the algorithm or on 
parallelizing it for a specific hardware. However, a comprehen-
sive study on the performance and energy efficiency of various 
n-body codes is missing, which is critical for N-body simula-
tion users to choose the right version of N-body code based on 
different hardware (e.g. multi-core CPUs and GPUs) available 
to them. In this paper, we evaluate the performance and energy 
consumption of five parallel implementations of NB and BH. 
For BH, we analyze the P-Threads version written by Nicholas 
Chen at UIUC [12], the OpenMP version developed by Ricar-
do Alves at the University of Minho in Portugal, and the 
CUDA version from the LonestarGPU benchmark suite [9]. 
For NB, we study an OpenMP and a CUDA version we pro-
grammed. Our CUDA code outperforms the corresponding n-
body implementation that ships with the CUDA 5.0 SDK [5] 
and reaches over two teraflops on some inputs on a K20c GPU. 
Section III provides more detail about these implementations. 
Hereafter, we refer to the five codes as BHPThr, BHOMP, 
BHCUDA, NBOMP, and NBCUDA. 

We first evaluate the impact of the thread count on the per-
formance and energy efficiency of the multi-core CPU codes 
(BHPThr, BHOMP, and NBOMP). We perform this analysis on two 
systems: one based on an Intel CPU (System 1) and the other 
based on two AMD CPUs (System 2). Our experiments show 
that up to 71% of the energy can be saved when all CPU cores 
are utilized. On the system that supports hyper-threading (Sys-
tem 1), we also evaluate the impact of hyper-threading on per-
formance and energy consumption. Our results show that hy-
per-threading can improve the performance of BHPthr and 
BHOMP by up to 30%, which yields up to 21% energy savings 
when simulating one million bodies. However, the impact of 
hyper-threading on the energy efficiency of NBOMP is negligi-
ble. Finally, we evaluate the benefit of using GPU acceleration 
on performance and energy efficiency of NB and BH. Our ex-
periments show that the GPU codes outperform the CPU ver-
sions by orders of magnitude. For example, when simulating 
one million bodies, the BHCUDA code running on a K20c GPU 
is 45 times faster and 97.6% more energy efficient than the 
BHOMP code running on a Xeon E5620 CPU. When simulating 
one million bodies, the NBCUDA code runs 424 times faster on 
the GPU and only consumes 0.27% of the energy compared to 
the NBOMP code running on the multi-core CPU. In addition, 
we find our Kepler-based Tesla K20c GPU to outperform our 
Fermi-based GeForce GTX 480 GPU in both performance and 
energy efficiency on all tested programs and inputs. 

The remainder of this paper is organized as follows. Section 
II discusses related work. Section III presents the CPU and 
GPU n-body implementations. Section IV describes our sys-
tems and experimental methodology. Section V discusses and 



analyzes the results. Section VI concludes our study. 

II. RELATED WORK 

The n-body simulation problem has been studied extensive-
ly, and a variety of algorithms for it have been proposed. In 
particular, many previous studies focus on developing fast al-
gorithms to break the O(n2) complexity boundary. 

In 1986, Barnes and Hut proposed the now well-known 
Barnes-Hut algorithm, which lowers the time complexity to 
O(n log n) using approximation [2]. Based on the general prin-
ciple of this algorithm, researchers have developed many vari-
ants to speed up the execution. Salmon implemented a parallel 
version for distributed-memory machines [13]. Later, Warren 
and Salmon proposed improved parallel implementations [15], 
[16]. In 1997, Warren et al. exceeded one gigaflop when run-
ning their Barnes-Hut code on 16 Intel Pentium Pro processors 
[14]. Liu and Bhatt developed an algorithm that is based on a 
dynamic global tree that spans multiple processors [8]. 
Burtscher and Pingali wrote the first Barnes-Hut implementa-
tion that runs the entire algorithm on a GPU [4]. Bedorf et al. 
present a similar GPU implementation [3]. 

Several algorithms with a linear time complexity have also 
been proposed. The first was devised by Appel [1] in 1985. 
Greengard and Rokhlin developed the O(n) Fast Multipole 
Method [6]. Xue proposed another linear-time hierarchical tree 
algorithm for n-body simulations [18]. 

Very little work has been published on studying the energy 
efficiency of different n-body algorithms. The closest work we 
can find was published by Malkowski et al. [10]. They explore 
how to use low-power modes of the CPU and caches, and 
hardware optimization such as a load-miss predictor and data 
prefetchers, to conserve energy without hurting performance. 

III. IMPLEMENTATION DESCRIPTION 

We evaluate five different n-body codes belonging to two 
different categories. The NB implementations have O(n2) com-
plexity and the BH implementations have O(n log n) complexi-
ty. The goal of all five programs is to simulate the time evolu-
tion of a star cluster under gravitational forces for a given 
number of time steps. 

A. BH Algorithm 

The Barnes-Hut algorithm approximates the forces acting 
on each body. It hierarchically partitions the volume around the 
n bodies into successively smaller cells and records this spatial 
hierarchy in an unbalanced octree. Each cell forms an internal 
node of the octree and summarizes information about all the 
bodies it contains. The leafs of the octree are the individual 
bodies. This spatial hierarchy reduces the time complexity to 
O(n log n) because, for cells that are sufficiently far away, the 
algorithm only performs one force calculation with the cell 
instead of performing one force calculation with each body 
inside the cell, thus drastically reducing the amount of compu-
tation. However, differing parts of the octree have to be trav-
ersed to compute the force on each body, making the code’s 
control flow and memory-access patterns quite irregular. 

The P-Threads, OpenMP and CUDA codes we study per-
form six key operations in each time step to implement the BH 

algorithm. The first is an O(n) reduction to find the minimum 
and maximum coordinates of all bodies. The second operation 
builds the octree by hierarchically dividing the space contain-
ing the bodies into ever smaller cells in O(n log n) time until 
there is at most one body per cell. The third operation summa-
rizes information in all subtrees in O(n) time. The fourth opera-
tion approximately sorts the bodies by spatial distance in O(n) 
time to improve the performance of the next operation. The 
fifth operation computes the force on each body in O(n log n) 
time by performing prefix traversals on the octree. This is by 
far the most time consuming operation in the BH algorithm. 
The final operation updates each body’s position and velocity 
based on the computed force in O(n) time. Note that the P-
Threads code only parallelizes the force calculation. The 
OpenMP and CUDA codes parallelize all six operations. In 
case of OpenMP, “parallel for” and “parallel” pragmas are 
used, in some cases in combination with gcc-specific synchro-
nization primitives, memory fences, and atomic operations to 
handle data dependencies. The force calculation code uses a 
block-cyclic schedule whereas the other operations use the 
default schedule. The CUDA code incorporates many GPU-
specific optimizations that are described elsewhere [4]. 

B. NB Algorithm 

The direct NB algorithm performs precise pair-wise force 
calculations. For n bodies, O(n2) pairs need to be considered, 
making the calculation quadratic in the number of bodies. 
However, identical computations have to be performed for all n 
bodies, leading to a very regular implementation that maps well 
to GPUs. As with BH, all force calculations are independent, 
resulting in a large amount of parallelism. 

Both the OpenMP and the CUDA implementations perform 
two key operations per time step. The first is the O(n2) force 
calculation and the second is an O(n) integration where each 
body’s position and velocity are updated based on the comput-
ed force. The OpenMP code uses a “parallel for” pragma to 
parallelize the outer loop of the force calculation and the loop 
of the integration. The default schedule is used in both cases. 
The CUDA code is very similar in structure and uses GPU 
threads to completely eliminate these two loops, i.e., each 
thread handles a different iteration. In addition, the force calcu-
lation code employs data tiling in shared memory (a software 
controlled L1 data cache) and unrolls the inner loop. 

In summary, the NB codes are relatively straightforward, 
have a high computational density, and only access main 
memory infrequently because of excellent caching. In contrast, 
the BH codes are quite complex (they repeatedly build unbal-
anced octrees and perform various traversals on them), have a 
low computational density, and perform mostly pointer-chasing 
memory accesses. Due to the lower time complexity, the 
BHCUDA implementation is about 33 times faster on a K20c 
than the NBCUDA code when simulating one million stars. 

IV. EVALUATION METHODOLOGY 

A. Systems, Compilers, and Inputs 

We conducted our experiments on two machines. System 1 
is based on a 2.4 GHz Xeon E5620 CPU with four cores run-
ning 32-bit CentOS 5.9. It contains two GPUs. The first GPU is 
a previous generation Fermi-based GeForce GTX 480 with 1.5 



GB of global memory and 15 streaming multiprocessors (SMs) 
with 480 processing elements (PEs) running at 1.4 GHz. The 
second GPU is a current generation Kepler-based Tesla K20c 
with 5 GB of global memory and 13 SMXs with 2,496 PEs 
running at 0.7 GHz. The idle power of the GTX 480 is 54 W, 
the K20c draws 13 W when idling, and the entire system con-
sumes 165 W in idle mode. System 2 contains two quad-core 
AMD Opteron 2380 CPUs running at 2.5 GHz. It has no 
GPUs. The idle power draw of System 2 is 134.5 W. 

We compiled the CUDA codes on System 1 with nvcc 5.0 
using the -O3, -ftz=true, and -arch=sm_20 or -arch=sm_35 
flags. For the P-Threads and OpenMP codes, we used gcc 4.6.3 
on System 1 and gcc 4.4.6 on System 2 with the -O3 flag on 
both systems. We ran the BH programs with 250,000, 500,000 
and one million stars and the NB programs with 25,000, 50,000 
and 100,000 stars. We used ten time steps for all experiments. 
The stars’ positions and velocities are initialized according to 
the empirical Plummer model [11], which mimics the density 
distribution of globular clusters. 

B. Energy Profiling 

We measure the system-wide energy consumption when 
running the application codes using a WattsUp power meter 
[17]. The meter’s software runs in the background as a daemon 
and samples the voltage and current to compute the power. It 
has a 1 Hz sampling frequency and a power resolution of 0.1 
W. The energy measurements are derived from the power read-
ings by integrating the power over the runtime of the codes. 

To improve the accuracy of our measurements, we report 
the median of five runs for each experiment. Additionally, we 
removed high-energy outliers in the data caused by operating 
system jitter [7] (a.k.a operating system noise or operating sys-
tem interference) and external user activities such as logging 
into the system, which are unavoidable in multi-user systems. 
Finally, we started our measurements with a four-second head 
delay before launching the program. This removes the over-
head caused by starting the meter and our applications at the 
same time and allows the system to settle before the application 
program is launched. We then removed the first four seconds 
of power readings from our final calculations. 

V. EXPERIMENTAL EVALUATION 

This section presents our experiments and analyzes the re-
sults. Subsection A discusses the impact of increasing the 
number of threads on performance and energy efficiency of the 
BH and NB codes. Subsection B studies the impact of hyper-
threading on performance and energy consumption. Subsection 
C evaluates the GPU results and compares them to the CPU 
results. 

A. Impact of Thread Count 

BH Algorithm Table I shows the runtime and the energy 
consumption of BHOMP and BHPThr on System 1 for one, four, 
and eight threads with 250,000, 500,000 and one million bodies 
over ten time steps. For all three input sizes and both imple-
mentations, we observe that the performance increases almost 
linearly (96% parallel efficiency) when going from one to four 
threads but sublinearly (64% parallel efficiency) when going 
from four to eight threads, i.e., when going from one to two 

threads per CPU core using hyper-threading. We defer the dis-
cussion of the hyper-threading results to Subsection B. 

TABLE I.  CPU BH RESULTS FOR 10 TIME STEPS ON THE HYPER-
THREADED 4-CORE SYSTEM 1 

 

 

Fig. 1. Runtimes of BHOMP and BHPThr with 1 million bodies and 10 time 

steps on System 1 

 

Fig. 2. Energy consumption of BHOMP and BHPThr with 1 million bodies and 

10 time steps on System 1 

Taking the 500,000-body experiments as an example, we 
observe that the OpenMP code’s runtime is 410.6 seconds with 
one thread and 106.3 seconds with four threads, which amounts 
to a speedup of 3.86 when quadrupling the number of cores 
used. Analyzing the energy consumption, we find that using 
one thread consumes 69,505 joules whereas using four threads 
only consumes 20,312 joules to compute the same result, a 
71% reduction in energy usage. The P-Threads implementation 

# of Bodies # of Threads Algorithm Runtime [s] Energy [J]

OpenMP 183.0 30,776

P-Threads 225.0 37,934

OpenMP 47.5 9,035

P-Threads 58.9 11,065

OpenMP 38.3 7,539

P-Threads 46.4 9,017

OpenMP 410.6 69,505

P-Threads 497.6 83,643

OpenMP 106.3 20,312

P-Threads 130.1 24,811

OpenMP 83.8 16,564

P-Threads 101.5 19,818

OpenMP 902.7 152,462

P-Threads 1,085.6 183,693

OpenMP 232.7 44,723

P-Threads 284.9 53,847

OpenMP 180.7 35,937

P-Threads 218.5 42,714
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behaves similarly but the absolute numbers are worse. It runs 
for 497.6 seconds with one thread and for 130.1 seconds with 
four threads, which amounts to a speedup of 3.82. Energy-
wise, we see a 70% savings when using four threads instead of 
one. The other two inputs exhibit nearly identical trends. For 
all three inputs sizes, the OpenMP version of BH consistently 
outperforms the P-Threads version on System 1 in both per-
formance and energy efficiency. On average, the OpenMP code 
is 22.2% faster and consumes 21.5% less energy than the P-
Threads code. Figures 1 and 2 visualize the runtime and energy 
consumption, respectively, for the 1,000,000-body runs. 

The results for System 2 are provided in Table II. Figures 3 
and 4 graphically depict the runtimes and energy consumption 
for one million bodies. Since this system has eight physical 
cores, we obtained results for one, eight, and 16 threads and 
250,000, 500,000 and one million bodies. On the middle input, 
the OpenMP implementation achieves a 7.89-fold speedup 
(98.6% parallel efficiency) and an 86% energy savings when 
going from one to eight threads. The P-Threads code yields a 
speedup of 7.17 (89.6% parallel efficiency) and an 85% reduc-
tion in energy consumption when going from one to eight 
threads. The results for the other inputs are again very similar. 

TABLE II.  CPU BH RESULTS FOR 10 TIME STEPS ON THE 8-CORE 

SYSTEM 2 

 

Interestingly, the BHOMP code scales substantially better on 
System 2 than the BHPThr code. Whereas the OpenMP code is 
only 7.4% faster when using one thread, its advantage over the 
P-Threads code increases to 18.3% when using eight threads. 
The energy savings closely follow these percentages. In con-
trast, the two codes scale nearly identically on System 1. 

Comparing the single-thread runs across the two systems, 
we find that System 1 is, on average, 2.54 faster on the 
OpenMP code and 2.25 times faster on the P-Threads code. 
However, the energy-efficiency ratios are lower. System 1 out-
performs System 2 by a factor of 2.04 on the OpenMP code 
and by a factor of 1.81 on the P-Threads code on average. 
Overall, System 1 is much faster and also more energy efficient 
than System 2, but System 2 has a lower average power con-
sumption of 135.8 watts (compared to 168.7 watts for System 
1). Note that these numbers are only a little above the idle 

power draw for both systems, showing that the one computa-
tion thread consumes relatively little extra energy. For refer-
ence, when using four threads on System 1 and eight threads on 
System 2, the average power draw increases to 190.2 watts and 
147.6 watts, respectively. 

 

Fig. 3. Runtimes of BHOMP and BHPThr with 1 million bodies and 10 time 

steps on the 8-core System 2 

 

Fig. 4. Energy consumption of BHOMP and BHPThr with 1 million bodies and 

10 time steps on the 8-core System 2 

In summary, we find the OpenMP implementation to out-
perform the P-Threads implementation in performance and 
energy efficiency on both systems for all investigated inputs 
and thread counts. This is most likely because the P-Threads 
code only parallelizes the force calculation whereas the 
OpenMP code parallelizes all six algorithmic steps. Neverthe-
less, both BH codes scale well on our two multi-core CPU sys-
tems. Most importantly, we find on both systems that using all 
available cores results in large energy savings. The main reason 
for this is the high idle power. Since its contribution to the 
overall energy consumption is proportional to the runtime, re-
ducing the runtime through parallelization saves energy. If the 
idle power were zero, using four cores to run the code, say, 
3.86 times faster would actually increase the energy consump-
tion relative to running the code on just a single core assuming 
all cores are independent (which they are not in current multi-
core CPUs) and identical. 

As real systems have a non-zero idle power, there is a min-
imum speedup that must be achieved by parallel code to be 
more energy efficient than serial code. For example, System 1 
must execute the BHOMP code at least 1.13 times faster using 
four cores to save energy over running the code on one core. 
The corresponding factor for System 2 is 1.10. Fortunately, a 
10% or 13% speedup should be relatively easy to achieve on 
four or eight cores, meaning that parallelization is likely to be 
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worthwhile to improve a program’s energy efficiency on to-
day’s multi-core systems. 

NB Algorithm Tables III and IV contain the experimental 
results for our CPU implementation of the NB algorithm run-
ning on Systems 1 and 2, respectively. They show how the 
OpenMP code performs for different input sizes and thread 
counts. As before, we use 1, 4, and 8 threads on System 1 and 
1, 8, and 16 threads on System 2. The input sizes are 25,000, 
50,000 and 100,000 bodies on both systems. These sizes are 
smaller because the NB code is slower than the BH code. The 
NBOMP results for the largest input are further illustrated in 
Figures 5 and 6 for System 1 and in Figures 7 and 8 for System 
2. We leave the hyper-threading discussion for Subsection B. 

TABLE III.  CPU NBOMP RESULTS FOR 10 TIME STEPS ON THE HYPER-
THREADED 4-CORE SYSTEM 1 

 

TABLE IV.  CPU NBOMP RESULTS FOR 10 TIME STEPS ON THE 8-CORE 

SYSTEM 2 

 

 

Fig. 5. Runtime of NBOMP with 100,000 bodies and 10 timesteps on System 1 

On System 1, the NB code scales nearly identically on all 
three inputs. Going from one to four threads, we obtain an av-
erage speedup of 3.87 (corresponding to 96.7% parallel effi-
ciency) and a 71.5% savings in energy. On System 2, the be-
havior is also very similar between the three inputs. Increasing 

the number of threads from one to eight yields a speedup of 
7.975 (99.7% parallel efficiency) and energy savings of 86.4%. 

 

Fig. 6. Energy consumption of NBOMP with 100,000 bodies and 10 time steps 

on System 1 

 

Fig. 7. Runtime of NBOMP with 100,000 bodies and 10 timesteps on the 8-

core System 2 

 

Fig. 8. Energy consumption of NBOMP with 100,000 bodies and 10 time steps 

on the 8-core System 2 

Comparing the single-threaded runs on both systems, we 
find that System 1 is 1.83 times faster and 1.48 times more 
energy efficient than System 2 when running NBOMP. The min-
imum speedup to be energy efficient using four cores on Sys-
tem 1 is 10.5%. System 2 only requires a minimum speedup of 
8.2% on eight cores to be more energy efficient. 

In summary, the BH and NB CPU codes experience good 
scaling and boosts in energy efficiency on both tested systems. 
Clearly, parallelizing the BH and NB codes is a very profitable 
way to improve both performance and energy efficiency. 

B. Impact of Hyper-Threading 

In this subsection, we study the impact of hyper-threading 
(i.e., running two threads per CPU core) on performance and 
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energy efficiency of System 1. System 2 does not support hy-
per-threading. 

BH Algorithm Table I and Figures 1 and 2 above illustrate 
the results for BH. Whereas hyper-threading clearly provides a 
benefit, the benefit is smaller than the benefit of using more 
physical cores. For instance, going from one to two threads per 
core (i.e., increasing the thread count from 4 to 8) results in a 
parallel efficiency of about 64%. In contrast, going from one to 
four threads with one thread per core results in a parallel effi-
ciency of about 96%. The results are nearly the same for both 
implementations and all inputs we tested. Note that the runtime 
as well as the energy consumption decrease when using hyper-
threading. On average, hyper-threading yields additional ener-
gy savings of 18% on BHOMP and 20% on BHPThr. 

On System 2, running twice as many threads as there are 
cores (i.e., increasing the thread count from 8 to 16) hurts the 
performance and the energy efficiency, as the data in Table II 
and Figures 3 and 4 above show, because this system does not 
support hyper-threading. Interestingly, the degradation is small 
for BHPThr but large for BHOMP. We are unsure what causes this 
difference in behavior between the two programs when over-
subscribing threads to cores in System 2. Running more threads 
than there are (non-hyper-threading) cores hurts the perfor-
mance and increases the energy consumption on both codes 
and all inputs. Hence, we do not recommend it. 

NB Algorithm Surprisingly, hyper-threading does not help 
with NB as shown in Figures 5 and 6. Whereas it does result in 
a tiny speedup, as Table III reveals, it actually raises the energy 
consumption. Hence, hyper-threading does not further improve 
the energy efficiency of the NB code on System 1. 

The reason why hyper-threading improves the performance 
and the energy efficiency of the two BH implementations but 
not the NB implementation is the following. The BH codes are 
memory bound, meaning that they do not fully utilize the CPU 
cores because the memory system is the bottleneck. Hyper-
threading enables each core to execute useful instructions from 
one thread whenever the other thread is stalled waiting for a 
memory request, thus boosting performance. In other words, 
hyper-threading helps hide some of the memory access laten-
cies. In contrast, the NB code is compute bound, i.e., the CPU 
cores are already fully utilized when running one thread per 
core. Hence, there is no benefit from hyper-threading, but it 
should be pointed out that it also does not hurt performance. 

In summary, we conclude that adding extra cores is more 
useful than adding hyper-threading support from an energy-
efficiency perspective. Yet, we find running two threads per 
core to save up to 21% energy (20% on average on BHPThr). 
Moreover, the combination of both approaches results in the 
largest energy savings and should be used when available. 

C. Impact of GPU Acceleration 

In this subsection, we study the performance and the energy 
efficiency of our CUDA implementations of BH and NB. We 
report the runtime over the entire application, including CPU 
and GPU code, and the energy consumption of the entire sys-
tem when executing the accelerated code segments on a GTX 
480 or a K20c GPU, both of which reside in System 1. As be-
fore, we run the BH code with 250,000, 500,000, and one mil-

lion bodies and the NB code with 25,000, 50,000 and 100,000 
bodies. Table V presents the results for the GTX 480 and Table 
VI for the K20c. Figures 9 to 12 depict the same results graph-
ically. 

TABLE V.  GTX 480 GPU BHCUDA AND NBCUDA RESULTS FOR 10 TIME 

STEPS 

 

TABLE VI.  K20C GPU BHCUDA AND NBCUDA RESULTS FOR 10 TIME STEPS 

 

Comparing the runtimes between the two GPUs in Figures 
9 and 10, we find that the K20c outperforms the GTX 480 by 
1.6% to 20.4% on BH and by up to a factor of 2.35 on NB. 
However, on the smallest NB input, the GTX 480 is 13.6% 
faster. Nevertheless, the K20c is typically faster as it is based 
on the current-generation Kepler architecture whereas the GTX 
480 is based on the previous-generation Fermi architecture. 

 

Fig. 9. Runtime of BHCUDA with 10 timesteps 

 

Fig. 10. Runtime of NBCUDA with 10 timesteps 

Algorithm # of Bodies Runtime [s] Energy [J]

250,000 1.3 376

500,000 2.4 663

1,000,000 4.8 1,223

25,000 0.4 249

50,000 1.1 371

100,000 3.5 906
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This difference in GPU generations is also the reason for 
the better energy efficiency of the K20c, which was a primary 
design goal for the Kepler. Figures 11 and 12 show the energy 
consumption of BHCUDA and NBCUDA, respectively. The K20c 
is more energy efficient than the GTX 480 on all three inputs 
and both codes. On BH, the K20c saves between 12% and 29% 
energy. On NB, it saves between 21% and 64% energy. 

In summary, the K20c generally but not always outper-
forms the GTX 480. The difference in runtime is more pro-
nounced on compute-bound code like NB. More importantly, 
the K20c is substantially more energy efficient than the GTX 
480, in particular on compute-bound code. Note that the higher 
performance of the K20c contributes to but is not the primary 
reason for its better energy efficiency. Rather, the K20c is 
based on a substantially lower power GPU design. 

 

Fig. 11. Energy consumption of BHCUDA with 10 timesteps 

 

Fig. 12. Energy consumption of NBCUDA with 10 timesteps 

To evaluate the benefit of using GPUs, we compare the 
GPU results to the results of the best-performing CPU code, 
which is the OpenMP version of BH and NB running on Sys-
tem 1 with hyper-threading. Figures 13 and 14 show the BH 
comparisons and Figures 15 and 16 show the NB comparisons. 

 

Fig. 13. Runtime comparison between BHOMP and BHCUDA with 10 timesteps 

The GPU codes are tremendously faster and much more 
energy efficient than the multi-core CPU codes on all inputs. 
Comparing BHOMP running on System 1 to BHCUDA running on 
the K20c, we find the GPU code to be 31 times as fast for 
250,000 bodies, 39 times as fast for 500,000 bodies, and 45 
times as fast for 1,000,000 bodies. Moreover, the GPU code 
consumes only 4.4% of the energy for 250,000 bodies, 3.3% 
for 500,000 bodies, and 2.4% for 1,000,000 bodies. This 
amounts to almost two orders of magnitude in energy savings. 
Clearly, GPUs are not only great at accelerating code but also 
nearly as effective at saving energy. 

 

Fig. 14. Energy consumption comparison between BHOMP and BHCUDA with 

10 timesteps 

 

Fig. 15. Runtime comparison between NBOMP and NBCUDA with 10 timesteps 

 

Fig. 16. Energy consumption comparison between NBOMP and NBCUDA with 

10 timesteps 

The GPU outperforms the CPU by even larger factors on 
NB. However, this is likely in part due to poor code generation. 
In particular, the gcc compiler does not exploit vector instruc-
tions for this code. Hence, we find the NBCUDA code running on 
the K20c to be 79 times as fast as the NBOMP code running on 
System 1 for 25,000 bodies, 225 times as fast for 50,000 bod-
ies, and 424 times as fast for 100,000 bodies. The GPU code 
consumes only 2.7% of the energy for 25,000 bodies, 0.66% 
for 50,000 bodies, and 0.27% for 100,000 bodies. This amounts 
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to close to three orders of magnitude in energy savings. 

In summary, our results indicate that GPUs can improve the 
performance of n-body codes by one to three orders of magni-
tude compared to multi-core CPUs. Their energy consumption 
is lower by almost the same factor, making GPU acceleration 
also a very promising and effective approach for improving the 
energy efficiency of n-body codes. 

VI. CONCLUSION AND FUTURE WORK 

This paper studies the energy consumption and perfor-
mance of five n-body codes running on two systems and two 
GPUs. The first system is based on a 2.4 GHz quad-core Intel 
Xeon E5620 CPU that supports 2-way hyper-threading. The 
second system contains two 2.5 GHz quad-core AMD Opteron 
2380 CPUs. The two NVIDIA GPUs are a 1.4 GHz GeForce 
GTX 480 with 480 processing elements and a 0.7 GHz Tesla 
K20c with 2496 processing elements. Two of the five n-body 
codes we study implement an O(n2) algorithm and the remain-
ing three programs implement the O(n log n) Barnes-Hut algo-
rithm. The former category includes an OpenMP and a CUDA 
version whereas the latter category includes a P-Threads, an 
OpenMP and a CUDA version. Each code is tested on 3 inputs. 

The studied codes scale well on both systems with different 
multi-core CPUs, including the complex Barnes-Hut imple-
mentation. However, there are differences in the scaling of the 
programs. Unexpectedly, we found some n-body codes to scale 
better on one system than on the other while other codes scale 
nearly equally on both systems. Hardly surprisingly, the 
OpenMP implementation that parallelizes every step of the 
algorithm is faster than the P-Threads implementation that only 
parallelizes one step. 

In general, the CPU power draw is relatively small com-
pared to the system idle power, which makes the energy con-
sumption of a program highly dependent on the runtime. As a 
consequence, any reduction in runtime results in nearly propor-
tional savings in energy. This is why program parallelization is 
so important to achieving high energy efficiency. It also ex-
plains why our system with the lower power draw is less effi-
cient as it is much slower. We conclude that shortening a pro-
gram’s runtime is paramount to improve its energy efficiency. 
Hence, it is crucial to parallelize the entire application and to 
utilize all cores. After all, we found very small speedups due to 
parallelization to be sufficient to improve the energy efficiency. 

Once all cores are used, running multiple threads per core 
on systems that support hyper-threading can result in signifi-
cant additional improvements. Interestingly, we found hyper-
threading to only help on the memory-bound code we studied 
but not on the compute-bound code. Nevertheless, since it does 
not appear to hurt, we recommend using hyper-threading when 
available. However, running too many threads can be detri-
mental to performance and energy efficiency. Thus, care must 
be taken to avoid oversubscribing threads to cores. 

Even though the power drawn by the GPUs is quite high 
(on the order of the system’s idle power) and much higher than 
that of the CPUs, the GPUs are so much faster that they turn 
out to be very energy efficient. In fact, the GPU-accelerated n-
body implementations we investigated consume two to three 
orders of magnitude less energy than the multi-core CPU 

codes. Whereas the current-generation K20c GPU typically but 
not always outperforms the previous-generation GTX 480 
GPU, the K20c appears to generally consume less energy, in 
particular on compute-bound code. Overall, we found GPUs to 
be great at speeding up our programs and nearly as effective at 
saving energy, making GPU acceleration our number one rec-
ommendation for improving energy efficiency. 

In future work, we plan to expand our test bed to encom-
pass a wider variety of systems and accelerators, including the 
new Intel Xeon Phi. On the software side, we want to extend 
our work to distributed-memory implementations as well as 
other commonly used n-body algorithms such as FMM. Final-
ly, we hope to broaden our investigation to important problem 
domains such as sorting and FFTs. 
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