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ABSTRACT 
GPU-accelerated programs are becoming increasingly common in 

HPC, personal computers, and even handheld devices, making it 

important to optimize their energy efficiency. However, accurately 

profiling the power consumption of GPU code is not straightfor-

ward. In fact, we have identified multiple anomalies when using the 

on-board power sensor of K20 GPUs. For example, we have found 

that doubling a kernel’s runtime more than doubles its energy us-

age, that kernels consume energy after they have stopped execut-

ing, and that running two kernels in close temporal proximity in-

flates the energy consumption of the later kernel. Moreover, we 

have observed that the power sampling frequency varies greatly 

and that the GPU sensor only performs power readings once in a 

while. We present a methodology to accurately compute the instant 

power and the energy consumption despite these issues. 

Categories and Subject Descriptors 
C.1.2 [Processor Architectures]: Multiple Data Stream Architec-

tures (Multiprocessors) – Single-instruction-stream, multiple-data-

stream processors (SIMD); B.8.2 [Performance and Reliability]: 

Performance Analysis and Design Aids. 

General Terms 
Algorithms, Measurement, Performance, Design, Experimentation. 

Keywords 
Power measurement, energy measurement, GPU power sensor. 

1. INTRODUCTION 
The computing landscape has changed substantially since the intro-

duction of accelerators, in particular compute GPUs [1]. For exam-

ple, many of the world’s top supercomputers now contain accelera-

tors [2]. Every new GPU generation, including the Kepler architec-

ture [3], improves the delivered performance and energy efficiency. 

As a result, the number of devices with GPUs and the number of 

GPU-accelerated applications will probably increase rapidly over 

the coming years. However, to be able to optimize the energy effi-

ciency of GPU code, we first need to develop a good understanding 

of the energy consumption of such programs, which requires accu-

rate power profiling. 

To make real-time power information available, the latest GPUs 

(e.g., the Tesla K20) have on-board sensors for querying the power 

consumption at runtime. Being able to obtain accurate power data 

enables GPU programmers to evaluate and improve the energy effi-

ciency of their code. However, the majority of published work in 

this area focuses on using models to estimate the power consump-

tion [4] [5] [6] [7] [8], presumably because most GPUs do not yet 

include built-in sensors. To the best of our knowledge, there is no 

published work that comprehensively investigates how to measure 

the energy consumption of modern GPUs like the K20 using the 

built-in power sensor. 

Such measurements are not as trivial as it might seem. In particular, 

the straightforward approach of sampling the power, computing the 

average, and multiplying by the runtime of the GPU code is likely 

to yield large errors and nonsensical results. For example, using this 

approach, doubling a GPU kernel’s runtime results in much more 

than twice the amount of energy used. Similarly, a kernel’s energy 

consumption appears to increase when another kernel is executed 

just before it. 

The straightforward approach assumes that the power measurements 

closely track the GPU activity (i.e., when kernel code is executing), 

that the sampling intervals are equal, that only application code 

causes GPU activity, etc. However, we show that the behavior of an 

actual GPU is more complex. In particular, this paper makes the fol-

lowing contributions. 

 We discuss and explain a number of unexpected behaviors 

when measuring a GPU’s power consumption. 

 We make important observations that should be taken into ac-

count when working with K20 power samples. 

 We present a methodology to accurately compute the true 

power and energy consumption using sensor data. 

 We validate our methodology in multiple ways and test it on 

Kepler-based K20c, K20m, and K20x GPUs. 

 We make our GPU energy-measurement tool, which imple-

ments this methodology, publicly available in open source at 

http://cs.txstate.edu/~burtscher/research/K20power/. 

The remainder of the paper is organized as follows. Section 2 dis-

cusses related work. Section 3 describes our test bed. Section 4 an-

alyzes potential problems with GPU power-sensor measurements. 

Section 5 presents our approach to ‘correct’ these measurements. 

Section 6 discusses validation results. Section 7 summarizes and 

draws conclusions. 

2. RELATED WORK 
The energy consumption of computer components can be obtained 

either directly or indirectly. Indirect measurements estimate the 

power consumption using a model that correlates power with hard-
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ware performance counters or other events. This approach has al-

ready been used for CPUs before compute GPUs became available 

[6] [9]. Two widely-used CPU power models are Wattch [10] for 

single-core CPUs and McPAT [11] for multi-core CPUs. Research 

on developing power models for GPUs is still in an early stage. Most 

of the GPU power models that utilize performance counters rely on 

statistics to correlate power to performance [7] [8] [12] [13] [14] 

[15] [16] [17] [18]. Hong and Kim proposed an integrated power 

and performance prediction model to predict the optimal number of 

active GPU processors for a given application [5]. Song et al. pro-

posed a GPU power model that is based on the training results from 

an artificial neural network [8]. Choi and Vuduc proposed the roof-

line model to estimate the GPU energy consumption [7]. Sohan et 

al. recently released GPUSimPow [12] [13], a framework for mod-

eling GPU power consumption, and Leng et al. developed GPU-

Wattch [14], a configurable GPU power model based on cycle-level 

simulations, but Kepler-based GPUs are not yet supported. The ben-

efit of using models to estimate the power consumption is that it can 

be deployed with low cost and applied to short-running codes. How-

ever, the parameters of these models need to be retrained for new 

hardware. In addition, the power estimation may be relatively inac-

curate. For example, GPUWattch differs by 9.9% to 13.4% from the 

power measured on actual hardware [14]. 

Direct measurement methods periodically collect samples of the 

current and voltage. The power is computed by multiplying the two 

values, and the total energy is calculated as the integral of the power 

over the execution time. For instance, using a simple power meter 

like WattsUP [19], we can collect the power readings of an entire 

node and calculate the total energy consumed by that node over a 

period of time. Note that WattsUP is easy to use but its maximum 

sampling frequency is rather low (1 Hz). To obtain the power con-

sumption of an individual component, e.g., a GPU, the base power 

of the node must be subtracted. 

Oftentimes, coarse-grained power measurements are not sufficient 

to optimize the energy-efficiency of code with complicated charac-

teristics. Therefore, several tools have been developed to provide 

fine-grained power consumption information. The best known such 

tool is probably PowerPack [20], which was developed at Virginia 

Tech for System G, the currently largest power-aware cluster [21]. 

PowerPack is able to measure the power consumption of individual 

components (e.g., the CPU or DRAM) within a node. However, its 

hardware-software power profiling approach is fairly expensive, dif-

ficult to implement, and hard to scale. Another widely used tool is 

PowerMon [22] [23], which comprises a power monitoring card that 

plugs into the motherboard. Compared to PowerPack, PowerMon is 

cheaper and easier to implement because it only contains a single 

integrated circuit (no wiring or soldering required). However, it in-

herits the weakness of PowerPack to only be able to measure the 

power consumption of a component that is directly plugged into the 

power supply. Sandia National Laboratory is exploring component-

level power measurement tools for deployment in large-scale sys-

tems [24][25][26]. Very recently, they have presented the PowerIn-

sight tool [27], which can instrument accelerators that draw power 

from the PCI bus and external power supplies. Another notable trend 

is to directly integrate power sensors into accelerators. For example, 

compute GPUs such as the Tesla C2075 (Fermi architecture [1]) and 

the Tesla K20 (Kepler architecture [3]) include on-board power sen-

sors that allow the direct measurement of the GPU’s power draw. 

Some of the observations we make in this paper for GPUs, including 

the tail energy, have also been reported for other devices such as the 

disk, WiFi, 3G, and GPS components of smartphones, which com-

plicates the fine-grained energy measurement of mobile applications 

[28][29][30][31]. The inability to accurately capture the power con-

sumption of very short-running kernels has also been identified in 

past CPU work and has motivated some of the aforementioned mod-

eling approaches that are based on hardware performance counters. 

3. BENCHMARKS, SYSTEM, AND 

ENERGY MEASUREMENT 

3.1. Benchmark Description 
We derived our test programs from two very different n-body im-

plementations. Both algorithms simulate the gravity-induced motion 

of stars (a.k.a. bodies) in a star cluster for a user-selected number of 

time steps. The stars’ positions and velocities are initialized accord-

ing to the empirical Plummer model [32], which mimics the density 

distribution of globular clusters. 

The first code, called NB, performs precise pair-wise force calcula-

tions. With n bodies, O(n2) interactions need to be considered. How-

ever, the same operations are performed for all n bodies, leading to 

a very regular implementation that maps well to GPUs. Moreover, 

the force calculations are independent, resulting in large amounts of 

parallelism. Our NB code reaches over 2 teraflops on a single K20c 

GPU and exceeds the performance of the n-body code in the CUDA 

5.0 SDK. 

The second code, called BH, uses the Barnes-Hut algorithm to ap-

proximately compute the forces [33]. It hierarchically partitions the 

volume around the n bodies into successively smaller cubes, called 

cells, until there is just one body per innermost cell. The resulting 

spatial hierarchy is recorded in an unbalanced octree. Each cell sum-

marizes information about the bodies it contains. This hierarchy re-

duces the algorithm’s complexity to O(n log n) because, for cells 

that are sufficiently far away, it suffices to perform only one force 

calculation with the cell instead of performing one calculation with 

each body inside the cell. We obtained the BH code from the 

LonestarGPU suite [34]. 

The NB code is relatively straightforward, has a high computational 

density, and only accesses main memory infrequently due to excel-

lent caching in shared memory. In contrast, the BH code is quite 

complex, has a low computational density, performs mostly irregu-

lar pointer-chasing memory accesses, and consists of multiple dif-

ferent kernels. As a result, it ‘only’ reaches some 200 gigaflops. 

Nevertheless, because of its lower time complexity, it is about 33 

times faster than the NB code when simulating one million stars. 

Both codes are over a factor of 30 faster than corresponding parallel 

OpenMP CPU code running on a modern Xeon multicore system. 

3.2. GPU and Compiler Description 
Our primary GPU is an NVIDIA Tesla K20c. It has 5 GB of global 

memory and 13 streaming multiprocessors (SMXs) with 2496 pro-

cessing elements (PEs). We also used a second K20c GPU, a pair of 

Tesla K20m GPUs, and a pair of Tesla K20x GPUs for our study. 

The main difference between a K20c and a K20m is that the former 

is equipped with fans whereas the later needs to be passively cooled. 

The K20x, in contrast, has 6 GB of main memory and 14 SMXs with 

2688 PEs. We compiled the CUDA codes with nvcc 5.0 and the 

‘-O3 -arch=sm_35’ flags. Depending on the experiment, we ran the 

programs with different numbers of stars and for one time step. 

3.3. Energy measurement 
We employ the GPU power sensors to obtain the energy consump-

tion of the test kernels. We wrote our own tool to query the sensor 

via the NVIDIA Management Library (NVML) interface, which re-



turns the power readings in milliwatts [35]. For consistency, we al-

ways sample both the power and the memory usage and include a 

high-resolution timestamp with each sample even though we do not 

need all of this data for most of our experiments. Unless noted oth-

erwise, all reported times are relative to when we started our tool 

and not relative to when the measured application or the first GPU 

kernel was launched. 

4. MEASUREMENTS AND 

OBSERVATIONS 
In this section, we highlight interesting aspects of power profiles ob-

tained from GPU sensors and discuss some implications. 

4.1. Power Lag and Distortion 
Figure 1 displays the characteristic profile obtained when sampling 

the GPU power sensor before, during, and after the execution of a 

regular kernel. The kernel starts running at time t1 and stops at time 

t2. The power profile stems from a single invocation of the force-

calculation kernel from the NB code. The profiles of other regular 

kernels look similar. Longer runtimes push the point t2 to the right, 

extending the flat part of the power curve. Shorter runtimes push the 

point t2 to the left, gradually eliminating the flat part (cf. Figure 2 

below). The asymptotic level that the curve approaches is different 

for different kernels. 

 

Figure 1: Typical shape of a GPU power profile when running 

a regular kernel (profile is from the NB force calculation 

kernel run once with 700,000 bodies) 

The two most striking aspects of the power profile are that (1) the 

power consumption lags behind the kernel activity and that (2) the 

shape of the profile does not match the kernel activity. Note that the 

kernel runtime is 5.346 seconds, so these are macroscopic effects. 

The actual kernel activity almost instantaneously shoots up, stays at 

a constant level for the duration of the execution, and then almost 

instantaneously drops to zero, as the following experiment demon-

strates. When reducing the kernel’s workload to X%, the runtime 

also drops to X% (within a few milliseconds), indicating that the 

power level should stay constant during execution. Instead, the 

power profile for the first X% of the runtime is identical to the be-

ginning of the profile in Figure 1. Similarly, the profile’s shape after 

the kernel stops is also partially the same, as the dashed lines in Fig-

ure 2 show. 

The power profile’s lag and its dissimilarity from the actual kernel 

activity cause problems when integrating the power to obtain the 

energy consumption. For example, due to the gradual instead of in-

stantaneous increase of the measured power, the integral from t1 to 

t2 will more than double when doubling the runtime of a kernel that 

performs the exact same computation twice. For instance, the energy 

calculated from the data in Figure 1 is 732 J, but the energy when 

running the same kernel twice as long is 1579 J, i.e., 115 J or almost 

8% more than double. This is counterintuitive. After all, the energy 

should also double or increase by a little less than a factor of two 

due to caching effects, only incurring certain overheads once instead 

of twice, etc. 

 

Figure 2: GPU power profile when running the NB force 

calculation kernel twice with a one-second delay between the 

two runs with 350,000 bodies (the dashed lines are three time-

shifted partial copies of the profile from Figure 1) 

Since the power is lagging behind the underlying kernel activity, it 

may be necessary to integrate beyond time t2 (perhaps to time t3 

when the power curve changes to a stair shape or to time t4 when the 

idle power is reached). Unfortunately, the end time for the integral 

is not obvious in the simple case shown in Figure 1 and is even less 

clear for more complex kernels or when consecutively invoking 

multiple kernels, which is common in GPU-accelerated applica-

tions. This latter case is particularly intriguing. If a second kernel is 

invoked before time t4, that is, before the idle power is reached, its 

power profile will start at a higher level. The second kernel invoca-

tion at time t1b in Figure 2 illustrates this case, where the subscript 

‘a’ refers to the first invocation and the subscript ‘b’ to the second 

invocation. The dashed lines show that the power profiles of the first 

and second invocation precisely follow the shape of the longer run-

ning kernel from Figure 1 except for the period between t2b and t3b 

(cf. next subsection). However, the second invocation starts at a 

higher power level and reaches a higher maximum. Hence, the inte-

grated energy of the second invocation is higher by an amount that 

is inversely related to the time between when the first kernel stops 

(t2a) and when the second kernel starts (t1b). For example, using the 

data from Figure 2, the energy consumption of the first invocation 

is 114 J whereas that of the second invocation is 147 J, a 29% in-

crease, even though the same independent computations are per-

formed on the same values. 

4.2. Tail Energy 
Figure 3 shows partial power profiles of six runs of the NB force 

calculation kernel. They are shifted such that the point t2, at which 

the kernels stop running, is at 16.5 s for all of them. Different input 

sizes were used to produce different runtimes and thus different 

power levels when the kernels terminate. 
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Figure 3 illustrates that the power profile between t2 and t3 appears 

to be a function of the power level at time t2. In contrast, the profiles 

between t3 and t4 are almost identical and independent of the kernel 

runtime or the reached power level. Moreover, a noticeable change 

in the shape of the profiles occurs at time t3, where they transit from 

a curve to a step function. Clearly, integrating the power beyond 

time t3 to obtain the energy consumption will simply add a constant 

amount of energy (about 130 J), making it doubtful whether this en-

ergy should be included. At best, it could be considered a fixed over-

head that does not correlate with the kernel activity. 

 

Figure 3: GPU power after running the NB force calculation 

kernel once with (from top to bottom) 500000, 320000, 250000, 

190000, 124000 and 95000 bodies 

Aside from the startling change in shape at time t3, the most note-

worthy aspect of these profiles is that they all settle at the same 

power level at time t3, which is about 52.5 W. Note that this is true 

even if the power level at time t2 is below 52.5 W, in which case the 

power draw actually increases after the computation has stopped. 

This counterintuitive behavior inflates the energy consumption of 

short-running kernels when integrating past t2 to compensate for the 

power lag. 

Since the delayed power consumption results in more ‘missing’ en-

ergy for short-running kernels, one could argue that it makes sense 

for the power draw to increase for a while after the kernel terminates. 

However, this is incorrect as the following experiment shows. With 

95,000 bodies, the kernel runtime is 0.107 seconds, the maximum 

power is 35.7 watts, and the integrated energy from t1 to t2 is 3.25 J. 

Adding the first part (from t2 to t3) of the tail energy, which is 119 J, 

would result in a true power consumption of over 1.1 kW while the 

code is executing. This number far exceeds the GPU’s maximum 

power rating. As on-board batteries and capacitors also cannot pro-

vide a kilowatt of power for a tenth of a second, integrating up to 

time t3 or beyond to compensate for the power delay cannot be the 

correct approach. Hence, the energy consumption after time t2, 

which we call ‘tail energy’, cannot be directly attributed to kernel 

activity. 

4.3. Sampling Intervals 
Figure 4 shows the elapsed time between consecutive power sam-

ples, i.e., the sampling interval lengths, overlaid over the power pro-

file from Figure 1. The cut-off spike at 16.6 s extends to 130 ms. 

These results are reproducible and were obtained when sampling the 

power at the maximum speed. 

The interval lengths in Figure 4 exhibit several interesting features. 

First, they vary by almost a factor of 500, ranging from 0.266 ms to 

130 ms. Clearly, the intervals cannot be assumed to be equal. Sec-

ond, there are obvious spikes just before and a little after the kernel 

executes as well as whenever the power is stepped down during the 

t3-t4 phase. Third, the interval lengths fluctuate rapidly while the ker-

nel is running and during the t2-t3 phase, i.e., in both phases where 

the power profile is curved. 

 

Figure 4: Sampling interval lengths (right axis, red line) and 

power profile (left axis, blue line) of the NB force calculation 

kernel run once with 700,000 bodies 

Since the spikes in the t3-t4 phase coincide with the GPU stepping 

down to lower power levels, we assume that they are the result of 

the driver not responding as quickly during these periods. In other 

words, whenever the hardware or software is busy changing the 

GPU power level, requests for power samples are delayed. In fact, 

such activity also seems to be the reason for the largest spike. Note 

that this spike is not due to transferring data from the GPU to the 

CPU as the CUDA code measured in Figure 4 does not transfer any 

results back to the host. In fact, all of our experiments with transfer-

ring no, some, or a lot of data have never resulted in a significant 

change in power readings. Hence, we believe that the measured 

power domain does not include the PCI-express hardware. Addi-

tional experiments revealed that the large spike always occurs when 

the host code terminates. By also querying the amount of available 

memory on the GPU, we found that the spike coincides with the 

system-allocated memory being released. This again points to driver 

activity that delays the power sampling requests. Similarly, we sur-

mise that the spikes before the GPU code starts running are due to 

driver activity to set up the kernel run. Again, memory consumption 

measurements corroborate this hypothesis. In particular, the largest 

spike before t1 coincides with a multi-megabyte increase in GPU 

memory consumption that happens before the application allocates 

its own memory. 

The reason for the rapid but consistent fluctuations of the interval 

lengths between t1 and t3 is also driver related. To better understand 

where these fluctuations are coming from, consider Figure 5, which 

shows a greatly magnified excerpt of Figure 4. 

Figure 5 reveals a pattern that repeats throughout the t1-t3 phase. In 

particular, there are about 38 closely spaced and identical measure-

ments, followed by a relatively large gap before the next set of 

closely spaced and identical measurements. The first set of power 

readings in Figure 5 are all at 109.325 W whereas the readings of 

the second set are all at 110.176 W. The sampling interval length 
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within these sets is about 0.283 ms. The gap between sets is around 

4.7 ms. As the power measurements only change after a gap, we 

believe the gaps are caused by the GPU’s sensor taking a new meas-

urement, which is why it takes longer to respond. Hence, the closely 

spaced measurements appear to simply be repetitions of the latest 

measurement. With this in mind, we find the true maximum sam-

pling frequency supported by the hardware to be about 66.7 Hz (15 

ms sampling intervals). 

 

Figure 5: Zoomed in and re-scaled excerpt from Figure 4 

showing the actual power samples (‘+’) and the corresponding 

interval lengths (‘x’, right axis) 

This finding has interesting consequences. Assuming a well be-

haved power profile and that we are willing to accept an error of 5%, 

on the order of ten power samples are minimally needed to compute 

the energy. At 15 ms per sample, that amounts to a runtime of 150 

ms, which exceeds the runtime of many kernels. In other words, it 

may be difficult to accurately measure the energy consumption of 

many real-world kernels with the built-in power sensor because their 

runtimes are too short. 

 

Figure 6: Power profile of the NB force calculation kernel run 

once with 700,000 bodies using actual (solid) and constant 

(dotted) sampling intervals 

Another interesting point is that, due to the large fluctuations in the 

interval lengths, one cannot simply compute the average of the 

power readings and multiply it by the runtime to obtain the energy. 

Figure 6 illustrates this problem by showing both the power profile 

from Figure 1, which correctly accounts for the differences in inter-

val lengths, as well as the same power readings but with fixed-size 

intervals between t1 and t4. 

Obviously, the two profiles do not overlap. They also do not result 

in the same energy when integrated. The solid line in Figure 6 yields 

an energy consumption of 1066 J between times t1 and t4 whereas 

the dotted line results in an energy consumption of 1205 J over the 

same period, a 13% discrepancy. 

5. PROPOSED APPROACH TO CORRECT 

THE POWER AND ENERGY 

MEASUREMENTS 
Based on the observations described in the previous section, we 

have developed a methodology to accurately compute the true 

power and energy consumption of GPU kernels. The key insight is 

that the power sensor gradually approaches the true power level ra-

ther than doing so instantly. Since the ‘curved’ power readings be-

tween times t1 and t3 reminded us of capacitors charging and dis-

charging, we tested whether the power profiles can be described by 

the same formulas. This turned out to work very well. We can only 

assume that this is the case because the power sensor hardware uses 

a capacitor of some sort. 

Armed with this insight, it is straight-forward to determine the ‘ca-

pacitance’ of the power sensor by minimizing the error between the 

measured and the modeled data. For example, we used a single ca-

pacitor function to approximate the curve between times t1 and t2 in 

Figure 1 and determined the value of the capacitance that minimizes 

the sum of the differences between the measured values and the 

function values. As the capacitance is constant, it only needs to be 

established once for a given GPU. We found C = 833.333 s on all 

tested K20 GPUs. Computing the true instant power Ptrue then be-

comes a simple function of the slope of the power profile dP/dt and 

the measured power Pmeas at time ti. The following is the symmetric 

discrete solution where C is the GPU capacitance from above: 

Ptrue(ti) = Pmeas(ti) + C × (Pmeas(ti+1) - Pmeas(ti-1)) / (ti+1 - ti-1) 

Based on this equation, we recommend the following approach for 

measuring and computing the true power of a GPU: 

1. Sample at least at 66.7 Hz and include time stamps. 

2. Remove consecutive samples of the same value that are no 

more than 4 ms apart as they do not constitute new data. 

3. Compute the true power with the above equation, using neigh-

boring power samples to approximate the slope. 

4. Compute the true energy consumption by integrating the true 

power, using the time stamps, over all intervals where the 

power level is above the ‘active idle’ threshold of 52.5 W. 

6. VALIDATION RESULTS 
This section presents results obtained with our approach and vali-

dates them in multiple ways. First, we repeat some of the above stud-

ies and check whether our approach resolves the discovered anom-

alies. Then we apply our approach to other systems and GPUs. Fi-

nally, we investigate a complex GPU application. We sample the 

power at the maximum rate. 

6.1. Single homogeneous kernel 
Since the power curve rises at the same speed regardless of how long 

a kernel runs (cf. Section 4.1), and the behavior after a kernel stops 

is also largely independent of the kernel (cf. Section 4.2), the impact 

of these oddities on the total energy can be made insignificant by 

sufficiently increasing the runtime. After all, for very long runs, the 
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power curve is close to the asymptotic power level for most of the 

runtime. For homogeneous kernels, the energy can thus be com-

puted with minimal error as the runtime times the asymptotic power. 

By scaling this energy appropriately, we obtain the expected true 

energy consumption of a shorter run. In other words, for very regular 

kernels, we hypothesize the energy consumption to be the runtime 

times the asymptotic power. Since the NB force calculation is such 

a regular kernel, we should be able to validate our approach on it. 

Our approach yields the corrected power profile shown in Figure 7 

for the NB force-calculation kernel. The dotted line represents the 

raw power measurements whereas the oscillating solid line shows 

the computed power draw between times t1 and t3. Since the profile 

is rectangular before t1 and after t3, the computed and actual power 

is the same in those regions. 

 

Figure 7: Corrected power profile (solid line) and raw profile 

(dotted line) when running the NB force calculation kernel 

once with 700,000 bodies 

We observe that the computed power profile, at last, closely follows 

the GPU kernel activity. In particular, it almost instantly shoots up 

when the kernel starts, stays at a (more or less) constant level during 

execution, and almost instantly drops to the aforementioned 52.5 W 

after the kernel stops. Importantly, the power level during execution 

coincides with the asymptotic power between t1 and t2, which veri-

fies the above hypothesis. 

Note that the power level after the execution coincides with the as-

ymptotic power between t2 and t3, which further validates our ap-

proach. This power level is identical to the ‘active idle’ level of 52.5 

W at the beginning of the t3 to t4 phase (cf. Section 4.2). Together 

with the fact that the driver/hardware seems to be busy when step-

ping down the power level in the t3 to t4 phase, we can now say with 

confidence that the active-idle power is likely maintained by the 

GPU for a while in anticipation of a new kernel launch. If no kernel 

is launched within a given period, which seems to be around 3.5 

seconds, the driver lowers the power step by step every second until 

reaching the idle power. 

Assuming this is correct, it is now clear that the power should be 

integrated from time t1 to time t2 to obtain the kernel’s energy con-

sumption. Any energy consumption by the GPU before or after the 

kernel execution is due to idling (at different power levels) and is a 

function of time but independent of the kernel. 

The corrected power profile in Figure 7 is not quite rectangular but 

exhibits wobbles. These are errors in the finite-precision measure-

ments of the power sensor (whose resolution is about 10mW), which 

are magnified by the slope of the curve. This is why the wobbles are 

larger where the curve is steeper. Fortunately, these errors tend to 

average out, resulting in accurate energy integrals. The wobbles can 

easily be smoothened by using a higher-order formula to calculate 

the slope, i.e., by using more than two neighboring power samples. 

6.2. Revisiting the Anomalies 

In Section 4.1, we noted two anomalies. The first was that doubling 

the kernel runtime resulted in more than twice the energy consump-

tion. Looking at the corrected power profile from Figure 7, we now 

find that doubling the runtime doubles the energy, as we would ex-

pect. Hence, the first anomaly is resolved, which further validates 

our approach. 

The second anomaly was that running the same kernel twice in close 

temporal proximity inflates the energy consumption of the second 

invocation. Figure 8 shows that our approach also resolves this 

anomaly as the two corrected profiles are now at the same level (and 

the power level between the kernel runs is at the active-idle level). 

In other words, the computed power profile of a kernel is unaffected 

by prior kernel runs, which is an important advantage of our ap-

proach. This means that we do not have to delay kernel runs until 

the GPU reaches its idle power level before we can measure the en-

ergy consumption of the next kernel. 

 

Figure 8: Corrected power profile when running the NB force 

calculation kernel twice with a 1-second delay between the two 

runs with 350,000 bodies 

6.3. Other GPUs 

To ensure that the observed behavior of our GPU’s power sensor is 

not due to a hardware (or software) problem, we repeated the exper-

iment shown in Figure 7 on other systems with different GPUs and 

different driver versions. 

Figure 9 shows the obtained profile on another system that also 

houses a K20c GPU, i.e., the same type of GPU that we have used 

for all of our measurements up to this point. Clearly, the power sen-

sor in the second GPU behaves nearly identically to the sensor in 

our primary GPU, including all the described oddities. The only no-

table difference is that all of the measurements are a few watts higher 

on the second GPU. The difference is, however, within the 5 W ab-

solute accuracy of the sensor. 
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Figure 9: Corrected and raw power profiles when running the 

NB force calculation kernel once with 700,000 bodies on 

another K20c GPU 

Figure 10 displays the power profile measured on a K20m GPU. We 

obtained a very similar profile on a second K20m and therefore only 

show one of them. Again, the general pattern remains the same. 

However, this GPU runs the kernel at a noticeably higher asymptotic 

power level of about 168 W. 

 

Figure 10: Corrected and raw power profiles when running 

the NB force calculation kernel once with 700,000 bodies on a 

K20m GPU 

Figure 11 displays the power profile measured on a K20x GPU. 

Again, a second K20x delivered an almost identical profile. Surpris-

ingly, the GPU power sensor on the K20x behaves very differently. 

In particular, it seems to measure the true instant power. This result 

verifies that our approach accurately corrects the power profiles on 

K20c and K20m GPUs. Moreover, it also works on a K20x. After 

all, integrating the unnecessarily corrected power profile yields 

nearly the same energy as integrating the raw measurements since 

the spikes contribute almost nothing to the integral and tend to av-

erage out. For the data shown in Figure 11, integrating the raw 

power values from t1 to t2 results in 680 J whereas integrating the 

‘corrected’ power results in 687 J, merely a 1% difference. Most of 

this discrepancy is due to the relatively wide cut-off spike just after 

t1. Note that the large drop after time t2 is due to the by far longest 

non-response we have measured on any GPU. In this case, it takes 

the driver nearly 600 ms to return a single power measurement. 

 

Figure 11: Corrected and raw power profiles when running 

the NB force calculation kernel once with 700,000 bodies on a 

K20x GPU 

6.4. Complex GPU Application 
Figure 12 displays the raw power measurements as well as the cor-

rected power profile for the complex Barnes-Hut (BH) n-body code. 

It contains several distinct kernels, most of which operate on an un-

balanced octree data structure. The source code is instrumented to 

measure the runtime of each kernel. We ran the BH code with 22 

million bodies (and one time step) to obtain a sufficient number of 

power samples for more than just the dominant kernel. Nevertheless, 

some of the kernels execute in under 2 ms and are therefore not vis-

ible in the power profile. The figure extends from the start of the 

first kernel to the end of the last kernel. 

 

Figure 12: Raw power measurements and corrected power 

profile when running the full BH application for one time step 

with 22 million bodies 

There are several interesting observations. First, the asymptotic 

power level is substantially lower for BH than for NB. Second, the 

raw power data follows the previously observed general shape but 

exhibits slight deviations. Third, the power starts dropping before 

the end of the computation. 

The BH power tops out at 128 W (compared to 158 W for the NB 

experiments). This lower level is reasonable as the BH code is irreg-

ular and therefore utilizes the GPU hardware less effectively. In par-

ticular, the streaming multiprocessors spend more time stalling 
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(idling) when running the BH code, which reduces the power draw. 

Our corrected power profile reflects this nicely. All of the kernels 

running in the a-d phase are highly irregular and, hence, reach a 

lower power level than the main kernel running in the d-e phase, 

which is implemented in a warp-centric way and therefore partially 

regularized. 

Note that these differences are almost undetectable and hard to in-

terpret in the raw power data but quite obvious in the corrected pro-

file. Clearly, the slight deviations from a ‘smooth’ profile are actu-

ally quite important. In fact, we now see that the kernel running in 

the a-b phase, which builds the octree top down, results in a similar 

power draw as the kernel running in the b-c phase, which performs 

a bottom-up traversal of the tree. Both of these kernels run for about 

150 ms. In contrast, the kernel running for 50 ms in the c-d phase, 

which sorts the data, spends a lot of time waiting, which is why there 

is a noticeable drop in the power draw. Interestingly, there is a big 

spike in the very short e-f phase, which is due to a regular kernel. 

Even though its runtime is only 8 ms, which corresponds to only half 

a power sample interval, we can see it in the corrected profile. 

The dominant force-calculation kernel, which performs many dif-

ferent partial top-down traversals of the octree, draws a mostly con-

stant amount of power except towards the end, where the power 

drops off. This drop-off is due to load imbalance, which results in 

some SMXs running out of work prematurely. This imbalance 

demonstrates that our approach computes the instant power rather 

than simply predicting the stable power. 

7. SUMMARY AND FUTURE WORK 
To enable programmers to study and reduce the energy consumption 

of their GPU codes, accurate energy measurements are needed. 

However, the simple approach of sampling the power, computing 

the average, and multiplying by the runtime can result in large errors 

when using the K20’s built-in power sensor. This is due to a number 

of complications. For example, our study shows that 1) the power 

profile is distorted with respect to the kernel activity, 2) the meas-

ured power lags behind the kernel activity, 3) running multiple ker-

nels one after another inflates the power draw of the later kernels, 4) 

after a short-running kernel, the power draw can even increase for a 

while, 5) integrating the power to a discernable time after a kernel 

stops does not correctly compensate for the power lag, 6) the sam-

pling interval lengths vary greatly, 7) the GPU sensor only performs 

power measurements once in a while, 8) the true sampling rate may 

be too low to accurately measure short-running kernels, and 9) the 

PCI-bus activity is not included in the sensor’s measurements. 

This paper proposes and evaluates a power- and energy-measure-

ment methodology that is accurate even in the presence of the above 

problems. It computes the true instant power consumption from the 

measured power samples, accounts for variations in the sampling 

frequency, and correctly identifies when kernels are running and 

when the GPU is in active-idle mode waiting for the next kernel 

launch. Furthermore, it is insensitive to earlier activities on the same 

GPU and works on different types of K20 GPUs. We also provide 

guidelines on how long the kernel runtime should minimally be to 

obtain accurate energy results. We validated our methodology using 

multiple systems, GPU types, scenarios, and CUDA programs. 

In future work, we plan to use our methodology to investigate the 

power and energy consumption of a wide range of GPU applications 

and the energy efficiency of different code optimizations. Further-

more, we want to add smoothing and support for multi-GPU nodes 

to our tool. Finally, we intend to automatically combine the results 

from multiple compute nodes to provide aggregate energy numbers 

in cluster environments. 
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